

Inclusive Search for New Physics at CMS with Jets and Missing Momentum Signature

Hamburg University Christian Autermann, Theo Broecker, <u>Arne-Rasmus Draeger</u>, Robert Klanner, Christian Sander, Matthias Schröder, Peter Schleper, Torben Schum, Jan Thomsen

5th Annual Workshop

of the Helmholtz Alliance

"Physics at the Terascale"

Germany BMBF FSP-CMS

Bundesministerium für Bildung und Forschung

 \mathbb{P} Published results (1.1fb⁻¹): PAS SUS-11-004

- Introduction to Jets + MET analysis
- Overview data-driven background estimations
- Details on the lost lepton background
- Results and Outlook

Introduction to Jets + MET analysis

- Overview data-driven background estimations
- Details on the lost lepton background
- Results and Outlook

Supersymmetry

Search for new physics at the CMS experiment

- Pair production of SUSY particles
- pp-collider: production of gluinos squarks cascade to LSP
 - Detector: High number of jets
- Stable LSP in final state
 - Detector: Missing Energy

Generic search for new physics

Selection

- $N_{jet} \ge 3$ ($P_T > 50$ GeV, $|\eta| < 2.5$) [central production]
- Require minimal $\Delta \phi$ (MHT, jet_{1,2,3}) (reject events with aligned MHT and missmeasured jet)
 - Reduce QCD with mismeasured jet
- Veto on e/μ (reduce background from W+Jets & ttbar)
 - Dedicated lepton SUSY analyses
- Baseline:

Search regions

- HT > 350 GeV ($\Sigma |P_T|$ of the jets) High HT > 800 GeV
- MHT > 200 GeV (- $\sum P_{T}$ of Jets

 $P_{T} > 30 \text{ GeV}, |\eta| < 5.0$

 High MHT > 500 GeV (inc HT > 800 GeV)

- Introduction to Jets + MET analysis
- Overview data-driven background estimations
- Details on the lost lepton background
- Results and Outlook

Events / 100 GeV

Data vs SM expectation (MC)

There are four main backgrounds from SM processes

- $Z \rightarrow vv$ (not reducible)
- QCD: Mismeasuret Jets
- TTbar/W + Jets: real MHT, hadronic tau
- TTbar/W + Jets: real MHT, lost lepton

PAS SUS-11-004

UH

All backgrounds are data driven estimated! No MC is used beyond this point, except for cross-check!

25 September, 2011

UH

QCD – rebalance and smear method

- Predict MHT from jet resolution
- Rebalance event by event
- Smear by jet response

Z-> νν, hadronic tau Background estimations

- Z estimation from photon + Jets
 - Remove photon

Lower statistics than γ
 Suffer from
 Br(Z→µµ)/ Br(Z→vv)=1/6

UH

- Similar to Z+jets at large Pt (MHT)
 but still more theory correction
- High stat (no branching ratio)

- W → tau
- Hadronic tau replace muon with Jet from tau template

- Introduction to Jets + MET analysis
- Overview data-driven background estimations
- Details on the lost lepton background
- Results and Outlook

- Electrons & muons not removed by the lepton veto contribute to background
- There can be three reasons to lose leptons
 - the lepton is not reconstructed
 - not isolated
 - out of acceptance estimated from MC

W/Top + (Lost Leptons) + v + Jets

- Muon control sample (CS):
 - All search cuts except lepton veto
 - Exactly one isolated muon,

no electron

- Scale the control sample according to the measured (in)efficiencies
- Measure the identification and isolation (in)efficiencies from data with the "Tag & Probe" - method on the Z-resonance
- Parametrize ID-eff. in lepton $P_{T} \& \eta$
- Isolation-eff. in $\Delta R(lep, jet)$ and $P_T(lep)/P_T(jet)$

Lepton isolation

Signal Contamination in the background prediction

Events / 10 GeV

- Signal contamination decreases sensitivity
 - Transverse mass cut to reduce signal contamination
- MET in W & tt events
 - Muon and MET can be combined to m_τ
 - Only dileptonic decays and mismeasured MET lead to tails
 - Apply cut at m_T=100 GeV
 - Removes 10% of CS but 50% signal for LM4 for the baseline selection
 - Even more eff. for higher MHT cuts
 - Fraction of signal contamination of the background estimation decreases
 - m_τ(W) cut improves sensitivity!

$$n_T = \sqrt{2p_T^{\mu} \not\!\!E_T (1 - \cos(\Delta \phi))}$$

UH

Work in progress

Closure Test: Lost Lepton Method

Closure Test: Compare MC truth (expectation) to prediction on MC

- Shape agrees for all studied distributions
- Only statistical uncertainties (closure test: no systematics)
- Slight underprediction (MC_{truth} = 11.8 \pm 0.6 MC_{predict} = 10.8 \pm 0.7)
 - 9% correction on data due to non-closure

Prediction of the Lost Lepton Method

Predicted Events on data for the lost lepton method: 427 ± 60 @ 4.61/fb, Plain MC simulation for the lost lepton from w+jet and ttbar : 545 ± 41

Baseline selection

Work in progress

Source	Systematic	Uncertainties
Statistics of control-sample	-18.2	+18.2
iso- & id- efficiencies (statistical)	-17.5	+23.7
Differences $t\bar{t}$, W , Z-samples	-42.7	+42.7
and kinematic in control vs. signal region		
SM background in control-region	-12.8	+0
MC use for acceptance calculation	-16.6	+16.6
transverse W-mass-cut	-17.2	+19.8
total, combined systematics	-53.7	+55.2
Differences $t\bar{t}$, W , Z -samples and kinematic in control vs. signal region SM background in control-region MC use for acceptance calculation transverse W-mass-cut total, combined systematics	-17.5 -42.7 -12.8 -16.6 -17.2 -53.7	+23.7 +42.7 +16.6 +19.8 +55.2

25 September, 2011

- Introduction to Jets + MET analysis
- Overview data-driven background estimations
- Details on the lost lepton background
- Results and outlook

Total data-driven background prediction

HT and MHT distributions in data compared to the combined data-driven background predictions.

Good agreement between prediction and data! No excess observed

UH

CMS Preliminary

Limits calculated from the hight HT and MHT search regions.

The observed and expected 95% CL exclusion contours in the CMSSM parameter $m_0^{-}m_{1/2}^{-}$ plane.

The remaining CMSSM parameters are $tan(\beta) = 10$, $\mu > 0$, and $A_0 = 0$

Limit combination

CMS Preliminary

TMHT Obs 1400 1600 1800 0 800 1000 1200 m_0 (GeV)

combined

Conclusion

Conclusion

- Worlds best limits in CMSSM!
- Public result: PAS-SUS-11-004
- Very generic analysis
- All backgrounds data-driven estimated
- New Results for full 2011 luminosity (4.61 fb⁻¹) aiming for publication

Backup

25 September, 2011 Arne Draeger

Isolation criteria

$$\mu_{Iso} = \frac{\sum_{trk}^{\Delta R=0.3} p_T^{chargedhadron} + \sum_{ecal}^{\Delta R=0.3} e_T^{neutral hadron} + \sum_{hcal}^{\Delta R=0.3} e_T^{photons}}{p_T}$$

Particle flow based relative isolation

Events / 50 GeV

10

10

 10^{-2}

400

Prediction with the Lost Lepton Method

Predicted Events from data: 244 ± 36.7 @ 1.14/fb,Plain MC simulation: 279 ± 26.6 baseline selection

CMS Simulation, √s = 7 TeV

CMS Simulation, $\sqrt{s} = 7 \text{ TeV}$

Source	Systematic Uncertainties	
Statistics of control-sample	-19.8	+19.8
Iso- & id- efficiencies (statistical)	-10.2	+10.2
Differences $t\bar{t}$, W , Z-samples	-24.4	+24.4
and kinematic in control vs. signal region		
SM background in control-region	-7.3	+0
MC use for acceptance calculation	-9.5	+9.5
Transverse W-mass-cut	-10.5	+10.5
Total, combined uncertainty	-36.7	+35.9

25 September, 2011

Arne Draeger

• Different topologies of Z, W, TTbar

Work in progress

Lost leptons from TTbar

- Uncertainty on the acceptance arising from the PDF set
- Found to be less than 6 %

