SUSY-Searches in the 1 Lepton-Channel

Helmholtz Alliance "Physics at the Terascale" - Workshop

I Introduction

- The ATLAS-Detector
- Minimal Supergravity (mSUGRA)

II The Analysis

- Data / Triggers
- Signal-Regions
- **Control-Regions**
- Results for mSUGRA
- Results for simplified models •

III Summary / Outlook

Carsten Meyer

Universität Mainz

I Introduction

The ATLAS-Detector

- **Multifunctional detector at the LHC** (CERN, Genf)
- pp-collisions at 14 TeV (design-energy) and 7 TeV in the year
 2010/2011 → Analysis done for 7 TeV
- High precision measurements of energies, momenta and tracks with full 2π -coverage in φ (especially important for E_{τ}^{miss})

Minimal Supergravity (mSUGRA)

Example of a GUT-SUSY-Theory

- All masses of scalar SUSY-particles unify at the GUT-scale at a single mass: m₀
- 2.) All masses of **fermionic** SUSY-particles (**Gauginos**) unify as well: m_{1/2}

600

500

Mass [GeV] 300

200

100

3.) All trilinear couplings unify: A_0

<u>5 Parameters left:</u>

- m₀: unified scalar mass
- m_{1/2}: unified Gaugino-mass
- A₀: unifies trilinear coupling
- tan(β): ratio of the VEVs of both higgs-doublets.
- sign(µ): higgsino mass-parameter

m_{1/2}

m

18

squarks

16

10

Log₁₀(Q/1 GeV)

12

14

II The Analysis

Data / Trigger

Total Integrated Luminosity [fb ⁻¹]

Integrated Luminosity:

- ~ 5 fb⁻¹ collected in 2011
- 1.04 fb⁻¹ used for the last publication
 - → Talk will present the results on this dataset
- Results on the full 2011dataset are in the pipeline

Instantaneous luminosity:

- ~ 10²⁹ cm⁻² s⁻¹ (first runs)
- ~ 10³³ cm⁻² s⁻¹ (latest runs)

Triggering-criteria based on the 3-level-ATLAS-trigger-system

- Ensure that offline P_T selection lies in the turn-on-plateau
- 18 (20) GeV Muons (Electrons) on trigger-level (no prescale)
 → 20 GeV offline Muons / 25 GeV offline Electrons

Definition of Signal-Regions I

Topology of SUSY-events depend on the masses in the SUSY-decaychain

- 1.) Gluino heavier than Squarks ($m_0 \ll m_{1/2}$)
 - \rightarrow Squarks will decay into a jet and a light gaugino
 - \rightarrow hard 2-body-decays
 - \rightarrow high LSP-boost, small number of Jets
- 2.) Gluino lighter than Squarks $(m_0 \gg m_{1/2})$
 - \rightarrow Squarks will decay into Gluinos
 - \rightarrow Gluinos will decay via 3-body-decays
 - \rightarrow lower LSP-boost, higher Jet-multiplicity
- Choice of Signal-regions (SRs) reflect these crucial kinematic differences:
 - → Signal-regions containing at least 3 Jets (optimized on region 1)
 - → Signal-regions containing at least 4 Jets (optimized an region 2)
- For each Jet-multiplicity, define:
- 1.) One SR with harsh cuts (performs well on signal-points with high-masses / low xsecs)
- 2.) One SR with softer cuts (performs well on signal-points with low-masses / high xsecs)
 - \rightarrow 4 Signal-Regions in total give good coverage of the whole $m_{_0}\!/m_{_{1/2}}$ plane

Definition of Signal-Regions II

- Kinematic variables used to separate SM-background from SUSY:
- 1.) Transverse mass (suppresses W and semilep. Top)

2.) "Effective Mass"

(provides a measure of the total energy/mass in the event)

$$m_T = \sqrt{2 \cdot p_T^{\ell} \cdot E_T^{\text{miss}} \cdot (1 - \cos(\Delta \phi(\ell, E_T^{\text{miss}})))}$$

$$M_{eff} = E_{\rm T}^{\rm miss} + H_T = E_{\rm T}^{\rm miss} + p_T^{\ell} + \sum_{i=1}^3 p_T^{jet_i}$$

W / Top Control – Regions

Basic Idea:

Select phasespace enriched with W and Top – events

Kinematic variables used:

1.) **Μ**_τ:

W- and Top-events accumulate around the W-mass \rightarrow 40 GeV < M_T < 80 GeV

2.) \mathbf{E}_{T}^{miss} :

W- and Top-events have intermediate E_T^{miss} (due to the Neutrino-momenta from the $W \rightarrow Iv - decay$) $\rightarrow 30 \text{ GeV} < E_T^{miss} < 80 \text{ GeV}$

- Separate this Region into a:
- 1.) Top-enriched sub-region (at least 1 b-tag)
- 2.) W-enriched sub-region (no b-tag)
- Normalize each background in the corresponding control-region to data and extrapolate into the signal-regions

W / Top Control - Regions (Extrapolation)

- ** Error on the background-prediction in the signal-region driven by:
- Statistical errors in the control-regions ٠
- Error on the background-subtraction and SUSY-contamination in the control-regions
- Error on the Top/W mc-expectation in the control- and signal-region ٠
- SUSY-signal-region selects "extreme" phase-space (high Jet-activity, large E_{τ}^{miss} ...) •
 - \rightarrow High sensitivity to higher order QCD-effects!
- **Theory uncertainties considered:**
- Change in the renormalization-• and factorization-scale
- Different MLM-matching-cutoffs
- Different Hadronization • (Pythia vs. Herwig)

Process	Scale	Jet parton matching	Hadronization	NLO Comparison
Тор	9%	9%	22%	NA
W+jets	24%	26%	15%	50%

events in the control-region

Theory-uncertainties on the extrapolation-factor for the Top- and W+Jets - background

The Combined Fit

 Fit all backgrounds and the signal-strength (for each SUSY-model) simultaneously in the control- and signal-regions

Processes considered:

- 1.) SUSY-signal (dominate the signal-regions)
- 2.) W+Jets and Z+Jets (dominate the W-CR)
- 3.) TTBar + Single Top (dominate the Top-CR)
- 4.) QCD (measured via a Matrix-method)

Likelihood-function:

$$L(\vec{n}|\mu, \vec{b}, \vec{\theta}) = P_{SR} \times P_{WR} \times P_{TR} \times P_{QR} \times C_{Syst}$$

- P denotes the Poisson-distributions in each control-region (W, Top, QCD) or signalregion (SR)
- A profile **Log Likelihood Ratio** test is performed to get the best fit-values:

$$\Lambda(\mu) = -2\left(\ln L(\vec{n}|\mu, \hat{\vec{b}}, \hat{\vec{\theta}}) - \ln L(\vec{n}|\hat{\mu}, \hat{\vec{b}}, \hat{\vec{\theta}})\right)$$

The Limit is extracted using the CLs - method

Results

Electron channel	3JL Signal region	3JT Signal region	Top region	W region
Observed events	71	14	162	565
Fitted top events	56 ± 20 (51)	$7.6 \pm 3.0 \ (6.8)$	$125 \pm 16 (112)$	64 ± 8 (58)
Fitted W/Z events	35 ± 20 (34)	$10.5 \pm 6.5 \ (10.1)$	$30.1 \pm 9.1 \ (29.3)$	425 ± 36 (413)
Fitted multijet events	$6.0^{+2.3}_{-1.4}$	$0.46\substack{+0.37\\-0.22}$	7.2 ± 2.6	76 ± 24
Fitted sum of background events	97 ± 30	18.5 ± 7.4	162 ± 13	565 ± 24
Muon channel	3JL Signal region	3JT Signal region	Top region	W region
Observed events	58	11	166	413
Fitted top events	47 ± 16 (38)	8.9 ± 3.2 (7.3)	142 ± 14 (115)	70 ± 7 (57)
Fitted W/Z events	$16.6 \pm 9.4 \ (20.1)$	5.0 ± 3.2 (6.1)	$19.0 \pm 4.8 \ (23.2)$	322 ± 23 (393)
Fitted multijet events	$0.0\substack{+0.0\\-0.0}$	$0.0\substack{+0.6\\-0.0}$	5.4 ± 2.2	21.6 ± 5.7
Fitted sum of background events	64 ± 19	13.9 ± 4.3	166 ± 13	413 ± 20

Fit-results for the 3 Jet – Cuts – signal – regions

- Number of observed and fitted events in the signal-regions agree within errors
- ✤ Same situation for the 4-Jet-signal-regions ☺
- → Agreement between SM-expectation and data used to set **limits on different SUSY-models**

Limits on the mSUGRA - model

- Already with 1fb⁻¹ the exclusion-reach is way above the LEP/TeVatron - limits
- ✤ For mSUGRA-points fulfilling m_{Gluino} ≈ m_{Squark}, Gluino-, and Squark-masses up to ~ 800
 GeV can be excluded

Keep in mind that mSUGRA is a very simple model probably not realized by nature!

❖ Is there a way to set limits in a less model-dependant way?
 → Simplified models

Limits for simplified models

- Set Limits on Crosssection for fixed production- and decay-channel varying:
- 1.) The **masses** of the produced **SUSY-Particles** (determines **production-xsec**)
- 2.) The compression-factor defined as:

 $X = \frac{m_{Chargino} - m_{LSP}}{m_{Heavy} - m_{LSP}}$

(determines momenta of particles → selection-efficiency)

- For each production-, decay-channel and X, a grid in m_{Heavy} vs. m_{LSP} is generated
- Plots on the right show examples for the process: $\tilde{g}\tilde{g} \rightarrow qqqqWW\chi_1^0\chi_1^0$

for 2 different values of X (1/4 and 3/4)

Summary / Outlook

- The 1-Lepton SUSY-search at ATLAS for **1fb**⁻¹ of integrated luminosity was presented
- No data-excess over the SM-model-prediction was observed
 - \rightarrow Limits on the benchmark-model (mSUGRA) were strongly improved
 - \rightarrow Limits on simplified models were presented
 - \rightarrow Allows all model-builders out there to check their models against the ATLAS-data
- Update of the analysis using the full 2011-dataset (~5fb⁻¹) in preparation including several changes:
- 1.) Redefinition of the signal-regions to increase sensitivity for higher SUSY-masses
- 2.) More work on understanding the higher pileup-environment
- 3.) Profiling systematic uncertainties within the combined fit
 - → Allows to constrain somewhat "arbitrary" theory-uncertainties
 - \rightarrow Maybe allows to measure the JES-uncertainty in-situ with high precision
- The air for SUSY is starting to get thinner, but still plenty of scenarii possible, where our searches are not sensitive yet!

Motivation

- Standardmodel of particle-physics cant be a complete theory of nature:
 - 1.) Only 3 of the 4 known forces of nature included What about Gravity?
 - 2.) No explanation why the higgs-mass should be in the range of the EW-scale (Hierarchy Problem).
 - 3.) Only ~5% of energy-content of the universe can be explained by matter present in the SM.
 - ~15% Cold Dark Matter
 - ~ 80% Dark Energy

4.) ...

Supersymmetry (SUSY)

New symmetry between Fermions and Bosons:

S |Fermion> ~ |Boson> S |Boson> ~ |Fermion>

- \rightarrow SUSY changes the **Spin** of particles by $\frac{1}{2}$ \rightarrow **Doubles** natures particle-content!
- New multiplikative Quantum-Number: R-Parity (P_R)
- $P_R = (-1)^{3(B-L)+2S} \rightarrow SM$ -particles have $P_R = 1$, SUSY-particles $P_R = -1$
- Consequences of a conserved R-Parity:
 - 1.) SUSY-particles are **produced in pairs.**
 - 2.) Each cascade-decay of a SUSY-particles ends up with the lightest supersymmetric particle (**LSP**).

Example of a SUSY particle-spectrum

R-Parität = +1			R–Par	R-Parität = -1		R-Parität = -1		
Teilchen	Symbol	Spin	Teilchen	Symbol	Spin	Teilchen	Symbol	Spin
Lepton Neutrino Quark	$\ell u q$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	Slepton Sneutrino Squark	$\begin{array}{c} \tilde{\ell}_{L}, \tilde{\ell}_{R} \\ \tilde{\nu} \\ \tilde{q}_{L}, \tilde{q}_{R} \end{array}$	0 0 0			
Gluon Photon Z–Boson W–Boson	$\stackrel{\rm g}{\mathop{\rm Z}}_{\rm W^{\pm}}$	1 1 1	Gluino Photino Zino Wino	$\tilde{\tilde{g}}_{\tilde{\gamma}}$ $\tilde{\tilde{Z}}$ \tilde{W}^{\pm}	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	\ Neutraline	$\tilde{\chi}_{i}^{0}$	$\frac{1}{2}$
Higgs	$\substack{\mathrm{H}^{0},\mathrm{H}^{\pm}\\\mathrm{h}^{0},\mathrm{A}^{0}}$	0 0	Higgsino	$\begin{array}{c} \tilde{\operatorname{H}}_{1}^{0}, \tilde{\operatorname{H}}_{2}^{+} \\ \tilde{\operatorname{H}}_{1}^{-}, \tilde{\operatorname{H}}_{2}^{0} \end{array}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	Chargino	$\tilde{\chi}_{i}^{\pm}$	$\frac{1}{2}$
Gravitor	ו	2	Graviting)	3/2			

Advantages of SUSY-Theories

- If one assumes invariance of the theory under local Supersymmetry, a particle with Spin = 3/2 occurs → provides a potential graviton-partner.
 - → First step towards an inclusion of gravity in particle-physics!
- 2.) Loop corrections of the new SUSY-particles stabilize the higgs-mass in the region of the EW-scale \rightarrow solution of the Hierarchy-problem!
- 3.) A stable and only weak interacting LSP provides a candidate for cold dark matter
- 4.) SUSY-GUT-theories **unify the couplingconstants** for sufficiently high energies!
- 5.) History shows that new symmetries often provide very powerfull tools!

Standardmodel-backgrounds containing one Lepton

<u>Top-Quark-pairproduction:</u> (semileptonic decay)

- 2 hard b-Jets, 2 Jets from the W-decay
- Lepton with large P_{T}
- E_{T}^{miss} given by the neutrino

Production of a W-Boson + ISR

- Jets given by gluon-radiation
- Lepton with high P_T because of the large W-boost and W-mass
- E_T^{miss} given by the neutrino
- Additional Backgrounds: **QCD**, Diboson-production

Systematics 1 Electron

Electron channel	SR3jL	SR3jT	SR4jL	SR4jT
Total statistical ($\sqrt{N_{obs}}$)	±8.43	±3.74	±6.40	±3.00
Total background systematic	+30.16 -30.16	+7.36 -7.36	+17.86 -17.86	+3.67 -3.67
Jet/MET energy resolution	±5.93	±0.47	±4.22	±0.76
Jet/MET energy scale	± 18.55	± 4.14	±13.55	±2.35
Lepton energy resolution	±0.54	±0.30	±0.05	±0.27
Lepton energy scale	± 1.06	±0.27	±0.36	±0.48
b-tagging	±1.21	± 0.24	± 0.70	±0.15
MC stat top	± 5.80	±1.99	± 3.78	±1.37
MC stat W	±4.36	± 2.30	± 2.16	±1.28
QCD fake rate	±1.38	± 0.15	±0.21	< 0.1
QCD real rate	± 1.48	±0.27	±0.82	±0.14
Theory top	± 15.88	± 2.11	±9.75	±1.17
Theory W	± 19.01	± 5.63	± 5.07	±1.85
Pile-up	±5.08	±0.99	±2.46	±0.42

Systematics 1 Muon

Muon channel	SR3jL	SR3jT	SR4jL	SR4jT
Total statistical ($\sqrt{N_{obs}}$)	±7.62	±3.32	±7.07	±2.65
Total background systematic	+19.27 -19.27	+4.35 -4.31	+15.79 -15.80	+2.71 -2.66
Jet/MET energy resolution	±8.99	±1.06	±0.92	±0.52
Jet/MET energy scale	±6.99	± 0.18	±9.06	±1.61
Lepton energy resolution	± 0.00	± 0.00	± 0.00	±0.00
Lepton energy scale	±0.75	±0.26	± 1.42	±0.54
b-tagging	± 1.00	±0.19	± 0.87	±0.12
MC stat top	±5.39	±2.12	± 4.01	±1.40
MC stat W	± 2.52	± 1.37	± 2.57	±0.65
QCD fake rate	< 0.1	< 0.1	< 0.1	< 0.1
QCD real rate	±0.53	± 0.14	± 0.44	< 0.1
Theory top	±12.87	±2.44	±9.99	±1.19
Theory W	± 8.80	±2.66	±7.28	±0.70
Pile-up	±3.45	±0.75	±2.73	±0.31

QCD Control – Region I (Muons)

2 Control-samples for tight (susy object def.) and loose muons (relax isolation):

$$\begin{split} N^{\text{obs}}_{\text{loose not tight}} &= N^{\text{obs}}_{\text{loose}} - N^{\text{obs}}_{\text{tight}} = (1/\epsilon^{\text{real}} - 1) \cdot N^{\text{real}}_{\text{tight}} + (1/\epsilon^{\text{fake}} - 1) \cdot N^{\text{fake}}_{\text{tight}} \\ N^{\text{obs}}_{\text{tight}} &= N^{\text{real}}_{\text{tight}} + N^{\text{fake}}_{\text{tight}} \end{split}$$

Solve for the number of tight QCD-fakes:

 $N_{\text{tight}}^{\text{fake}} = \frac{N_{\text{loose not tight}}^{\text{obs}} - (1/\epsilon^{\text{real}} - 1) \cdot N_{\text{tight}}^{\text{obs}}}{1/\epsilon^{\text{fake}} - 1/\epsilon^{\text{real}}}$

QCD Control – Region II (Electrons)

Problem:

- QCD consists of 3 components (Conversions, Hadrons, HF)
- Different components have different shapes for the relavant distributions
 - \rightarrow Components behave different when extrapolating into the signal-region

- Get a template for each process in the corresponding control-region
- Fit relative components

	Electron channel	Muon channel
SR	< 0.3	< 0.5
WR	9.9 ± 13.7	0.7 ± 1.3
TR	4.1 ± 5.7	0.3 ± 0.5

Object Definitions

Electrons:

- P_T > 25 GeV
- |η| < 2.47
- "Tight" Quality

Muons:

- P_T > 20 GeV
- |η| < 2.4
- Isolation
- Cosmic veto

✤ <u>Jets:</u>

- P_T > 30 GeV
- |ŋ| < 2.5
- AntiKt4 Algorithm
- JVF > 0.75 (pileup-suppression)

Missing transverse energy:

- Calorimeter based + Muons
- Corrected for selected physics-objects

4 Jet Results

Electron channel	4JL Signal region	4JT Signal region	Top region	W region
Observed events	41	9	1382	1872
Fitted top events	38 ± 15 (34)	4.5 ± 2.6 (4.1)	1258 ± 44 (1138)	391 ± 14 (354)
Fitted W/Z events	$9.5 \pm 7.5 \ (9.2)$	3.5 ± 2.2 (3.4)	88 ± 21 (86)	1242 ± 89 (1202)
Fitted multijet events	$0.90\substack{+0.54\\-0.37}$	$0.00\substack{+0.02\\-0.00}$	35 ± 13	239 ± 78
Fitted sum of background events	48 ± 18	8.0 ± 3.7	1382 ± 37	1872 ± 43
Muon channel	4JL Signal region	4JT Signal region	Top region	W region
Observed events	50	7	1448	1623
Fitted top events	39 ± 13 (36)	$4.7 \pm 2.2 \ (4.3)$	$1319 \pm 45 (1231)$	382 ± 13 (357)
Fitted W/Z events	$14.1 \pm 8.5 \ (14.2)$	$1.4 \pm 1.1 \ (1.4)$	91 ± 19 (92)	$1169 \pm 46 \ (1185)$
Fitted multijet events	$0.0\substack{+0.0\\-0.0}$	$0.0\substack{+0.6\\-0.0}$	38 ± 10	71 ± 16
Fitted sum of background events	53 ± 16	6.0 ± 2.7	1448 ± 38	1623 ± 40

Simplified models 1

Simplified models 2

