

Measurement of the B_s^0 oscillation frequency Δm_s at the LHCb experiment

Sebastian Wandernoth Physikalisches Institut Universität Heidelberg

- Introduction
 - The LHCb experiment
 - B-oscillation
- Measurement of Δm_s in the decay $B_s^0 \rightarrow D_s^- (K^+ K^- \pi^-) \pi^+$
 - Motivation
 - Ingredients
 - Results
 - Systematic studies
- Summary

INTRODUCTION

The LHCb experiment

The LHCb experiment

The LHCb experiment

B-oscillation

Neutral B-mesons oscillate into their anti particles

 $|B_L\rangle = k |B_q\rangle + l |\overline{B_q}\rangle$ $|B_H\rangle = k |B_q\rangle - l |\overline{B_q}\rangle$

Mass eigenstates ≠ flavour eigenstates

Dominant Feynman diagrams (Standardmodel)

Oscillation frequency corresponds to mass difference Δm_q of B_L and B_H Frequency in the B_s^0 -system much larger than in B_d^0 -system \rightarrow need precise decay time resolution

5th Annual Workshop of the Helmholtz Alliance Sebastian Wandernoth

MEASUREMENT OF Δm_s IN THE DECAY $B^0_s ightarrow D^-_s (K^+K^-\pi^-)\pi^+$

- Distinguish between oscillated $(B_s^0 \to \overline{B_s^0} \to D_s^+ \pi^-)$ and not oscillated $(B_s^0 \to D_s^- \pi^+)$ B-mesons
 - Decay flavour determined by charge of D_s^-
 - Production flavour \rightarrow Flavour tagging algorithms
- Time-dependent measurement of oscillation asymmetry A_{osc}

Proper decay time:
$$t = \frac{L*m}{p}$$

$$A_{osc}(t) = \frac{N_{not osc.}(t) - N_{osc.}(t)}{N_{not osc.}(t) + N_{osc.}(t)} \propto \cos(\Delta m_s t)$$

Flavour tagging algorithms

2 possibilities to determine the production flavour

- Tag the signal b-quark directly (same side) → used for the first time at LHCb in this analysis
- Tag the "other" b-quark (opposite side) → calibrated in reference channels

- Don't work perfectly
 - Efficiency that tagger gives a decision at all ε_{tag}
 - probability for wrong decision $\boldsymbol{\omega}$
 - "other" b-meson oscillates \rightarrow wrong decision
 - wrong lepton/kaon chosen \rightarrow 50% wrong decision
 - charged particle missed in vertex charge tagger → wrong decision
- Combined to figure of merit $\varepsilon_{eff} = \varepsilon_{tag} D^2$ (with $D = 1 2\omega$)
- Typical value for $\varepsilon_{eff} = 2 4\%$
- Dilution factor *D* corresponds to amplitude of oscillation

- Fast oscillation of $B_s^0 \rightarrow$ require very good resolution (\approx 45fs)
- Completely dominated by resolution of secondary vertex
- Use per-event error estimate σ_t by the fit
- Calibrated on data
 - Take D-meson from primary interaction
 - Combine with π from primary vertex
 - Fake B-meson has by construction decay time t=0
 - − Width of pull-distribution t/σ_t → correction factor S_{σt} for σ_t
 - − Uncertainty of $S_{\sigma_t} \approx 10\%$ (→systematic studies)

- Data-set: 341 pb⁻¹ taken 2011
- Divide in 3 subsample \rightarrow profit from resonant D_s^- decays
 - $B_s^0 \rightarrow D_s^-(\boldsymbol{\phi}(K^+K^-)\pi^-)\pi^+)$
 - $B_s^0 \to D_s^- (K^* (K^+ \pi^-) K^-) \pi^+ >$
 - $B_s^0 \to D_s^- (K^+ K^- \pi^-) \pi^+$

Fitted simultaneously with physical parameters common

- Background
 - $B_s^0 \rightarrow D_s^- (K^+ K^- \pi^-) K^+$ (Treated as signal)
 - $B_d^0 \to D^-(K^+\pi^-\pi^-)\pi^+$
 - $\Lambda_b \to \Lambda_c^- (\bar{p}K^+\pi^-)\pi^+$
 - Combinatorial background
- 2 dim. Unbinned Fit in mass + decay time

Projection on mass-dimension

5th Annual Workshop of the Helmholtz Alliance Sebastian Wandernoth

- Fit using same + opposite side tagger
 - $-\Delta m_s = (17.725 \pm 0.041) \text{ ps}^{-1}$ $-\varepsilon_{eff,SST} = (1.2 \pm 0.4)\%$ **A**_{mix}0 LHCb preliminary OST+SST $-\varepsilon_{eff,OST} = (3.1 \pm 0.8)\%$ $\sqrt{s} = 7 \text{ TeV}, 341 \text{ pb}^{-1}$ 0.2 -0.2 -0.4 0.1 0.2 0.3 t modulo $2\pi / \Delta m_s$ [ps]

Systematic	Effect on $\Delta \mathrm{m_s}~[ps^{-1}]$
Decay time acceptance	0.000
Decay time resolution ($\pm 10\%$)	0.001
Decay time resolution model	0.001
z-scale	0.018
Momentum scale	0.018
σ_t PDF	0.000
$\Delta\Gamma_s$	0.002
Mass model	0.003
total	0.025

- $341 \ pb^{-1}$ of data taken by the LHCb experiment (9189 signal candidates) were analyzed
- Using same side and opposite side taggers we obtain

$\Delta m_s = 17.725 \pm 0.041(stat) \pm 0.025(syst) ps^{-1}$

compare: $\Delta m_s = 17.77 \pm 0.1(stat) \pm 0.07(syst) \ ps^{-1}$ (CDF 2006)

BACKUP

Decay time resolution/Flavourtagging

Both flavourtagging and decay time resolution directly influence the amplitude of the oscillation

 \rightarrow can only measure combination of both

To measure the tagging power, the resolution has to be known as precisely as possible and fixed in the fit

Perfect tagging Perfect resolution

Realistic tagging Perfect resolution

proper time [ps]

Sum of the 3 decay modes 500 + 500

- decay time biasing selection (impact parameter of B-daughters)
 → need acceptance function
- Determined on Monte Carlo simulated data
- Essential for a lifetime measurement; however cancels to first order in oscillation asymmetry A_{osc}

- Shape motivated by fit to high mass sidebands (sum of 3 modes, left plot)
- Distribution similar for the three modes (right plot)
- α , β , f and a are floating parameters in the lifetime fit (shared)

$$P_{combbkg}(t) = (t-a)^2 \left(f e^{-\alpha t} + (1-f) e^{-\beta t} \right)$$

$$\Delta\Gamma_s$$
 is fixed to 0.1* Γ_s , systematics in range [0,0.2* Γ_s]

$$P_{t} = \left[e^{-\Gamma_{s}t} \cdot \left(\cosh\left(\frac{\Delta\Gamma_{s}}{2} \cdot t\right) \pm (1 - 2 \cdot \omega) \cos(\Delta m_{s} \cdot t) \right) \right] \otimes Gauss(0, 1.37 \cdot \sigma_{t}) \cdot f_{acc}(t)$$

- ✤ OST only fit
 - use per-event ω_{pred} from independent calibration

•
$$\omega_{true} = a * (\omega_{pred} - \langle \omega \rangle) + b$$

- Cross check: fit for a and b ($a = 1.28 \pm 0.20$, $b = 0.382 \pm 0.018$)
- Compatible with *a* and *b* from calibration
- ✤ SST only fit
 - Fit for average ω
- ✤ OST+SST combination
 - In case both give a decision pick the one with smaller ω
 - $\omega_{OST} = \omega_{pred}, \omega_{SST} = 0.35$
 - Use event-by-event ω for OST, average ω for SST

Background proper time pdf

- Detailed description of the background PDFs are in the note
- Combinatorial background:
- Average tagging asymmetry included (free parameter, shared among 3 modes)

B_d^0 reflection background:

- Same pdf as signal ($\Delta \Gamma_s = 0$, slow oscillation, B_d lifetime)
- OST behaviour like signal
- SST average tagging asymmetry (free parameter, shared among 3 modes)

Λ_b background:

- Simple exponential with Λ_b lifetime, same acceptance as signal
- OST behaviour like signal
- SST average tagging asymmetry (free parameter, shared among 3 modes)

- For the per-event variables σ_t and ω_{pred} a separate pdf for signal and background has to be included
- Take the σ_t (left) and ω_{pred} (right) distribution and normalize these histograms

- Floating parameters (all shared among 3 modes)
 - $-\Delta m_s$
 - Tagging efficiencies for signal & background
 - Tagging asymmetries for comb. background
 - Signal OST ω_{pred} calibration parameters (*a*, *b*) constraint from calibration
- Fit results:
 - $\Delta m_s = (17.775 \pm 0.046) \text{ ps}^{-1}$
 - $\varepsilon_{OST} = (32.5 \pm 0.5)\%$
 - This corresponds to $\varepsilon D^2 = (3.2 \pm 0.8)\%$

- Floating parameters (all shared among 3 modes)
 - $-\Delta m_s$
 - Tagging efficiencies for signal & backgrounds
 - Tagging asymmetries for comb., B_d and Λ_b background
 - Signal SST average $\overline{\omega}_{sig}$
- Fit results:
 - $\Delta m_s = (17.624 \pm 0.075) \text{ ps}^{-1}$
 - $-\overline{\omega}_{sig} = (34.4 \pm 2.7)\%$
 - $\varepsilon_{SST} = (13.4 \pm 0.4)\%$
 - This corresponds to $\varepsilon D^2 = (1.3 \pm 0.4)\%$

	OST only	SST only	OST + SST
ε_{SST} [%]		13.4 ± 0.4	12.1 ± 0.4
$\overline{\omega}_{SST}$ [%]		34.4 ± 2.7	34.4 ± 2.8
$(\varepsilon D^2)_{SST}[\%]$		1.3 \pm 0.4	1.2 ± 0.4
ε_{OST} [%]	32.5 ± 0.5		29.0 ± 0.5
$(\varepsilon D^2)_{OST}[\%]$	3.2 ± 0.8		3.1 ± 0.8
$\Delta m_s [\text{ps}^{-1}]$	17.775 ± 0.046	17.624 ± 0.075	17.725 ± 0.041
Results for Δm_s com	patible within 1.7σ		

We evaluated the systematics for these two results in these scenarios:

- $\overline{\omega}_{SST}$ for the SST only fit
- Δm_s for the OST + SST combination fit

Most of the systematics unchanged with respect to 2010 analysis

• Biggest change is larger mass shift \rightarrow momentum scale bias ($s_p = 1.6\%$, from study on J/Psi mass peak)

$$t = \frac{L \cdot (1 + s_M) \cdot M_{B_s^0}}{(1 + s_p) \cdot p_{B_s^0}} \quad \text{, with } s_M = \frac{s_p \cdot (M_{B_s^0} - 2M_K - 2M_\pi)}{M_{B_s^0}}$$

- Decay length L scaled by alignment → assigned 1‰ error on z-scale (unchanged with respect to 2010 analysis)
- Mass and momentum scaled, but bias cancels partially
- Total effect is $\frac{1+s_M}{1+s_p} = 0.9997 \rightarrow 0.3\%$, well within range of assigned 1‰
- As a cross check rescaling of 4-momenta on Ntuple, recalculated mass and proper time $\rightarrow \Delta_{\Delta m_s} = 0.001$

Selection for $B_s^0 \rightarrow D_s^- \pi^+$

Stripping selection (Stripping12)

Cuts on B_s candidate			
$m(B_s)$	[4.80, 5.85] GeV		
vtx χ^2	< 12		
IP χ^2	< 25		
cosDIRA	> 0.9998		
lifetime	> 0.2 ps		
Cuts on D_s candidate			
р	> 2 GeV		
p_T	> 1.5 GeV		
vtx χ^2	< 12		
IP χ^2	> 9		
cosDIRA	> 0.9		
$ m_{KK\pi} - m(D_s)_{PDG} $	< 110 MeV		
$ m(D_s) - m(D_s)_{PDG} $	< 100 MeV		
Cuts on D_s daughters			
p	> 2 GeV		
p_T	> 250 MeV		
$\min(\operatorname{IP}\chi^2)$	> 4		
$\max(\operatorname{IP}\chi^2)$	> 40		
DOCA	< 1.5 mm		
Track χ^2	< 5		
Cuts on bachelor π			
р	> 5 GeV		
p_T	> 500 MeV		
$\mathrm{IP} \chi^2$	> 16		
Track χ^2	< 5		

Offline selection

Cuts on B_s candidate			
p	> 2 GeV		
IP χ^2	< 16		
cosDIRA	> 0.9999		
primary vertex separation significance	> 64		
Cuts on D_s candidate			
p_T	> 2 GeV		
primary vertex separation significance	> 100		
$ m(D_s) - m(D_s)_{PDG} $	< 30 MeV		
Cuts on D_s daughters			
p_T	$> 300 \mathrm{MeV}$		
$\min(\operatorname{IP}\chi^2)$	> 9		
$DLL(K - \pi)$ for kaons	> -10		
$DLL(K - \pi)$ for pions	< 10		
Cut on bachelor π			
$DLL(K - \pi)$ for pions	< 5		
Cuts specific for $D_s \to \phi \pi$			
$ m(\phi) - m(\phi)_{PDG} $	< 15 MeV		
Cuts specific for $D_s \to K^*K$			
$ m(K^*) - m(K^*)_{PDG} $	< 50 MeV		
$DLL(K - \pi)$ for kaon with same charge as D_s	> 0		
$DLL(K - p)$ for kaon with same charge as D_s	> -10		
Helicity angle $ \cos \psi $	> 0.4		
Cuts specific for non-resonant $D_s \rightarrow K^+ K^- \pi^-$			
$DLL(K - \pi)$ for pions	< 0		
DLL(K-p) for kaons	> 5		
$DLL(K - p)$ for kaon with same charge as D_s	> -10		