

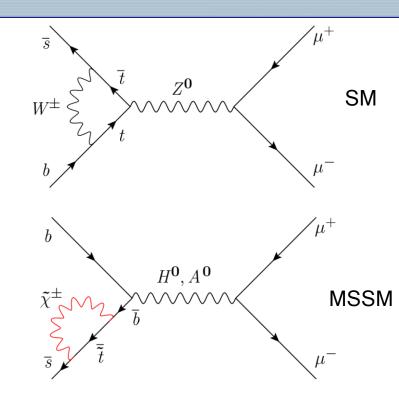
$B^{\pm} \rightarrow J/\psi(\mu^{+}\mu^{-})K^{\pm}$ as Reference Channel in the Search for $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ with ATLAS

Bakul Gaur

5th Annual Workshop of the Helmholtz Alliance, Bonn December 8, 2011

Overview

- Overview of rare B-decays
 - Motivation
 - $-B_s \rightarrow \mu\mu$ studies in ATLAS
 - The reference channel $B^{\pm} \rightarrow J/\psi K^{\pm}$
- Estimation of B[±] yield using 2011 data
 - $-B^{\pm}$ selection
 - Un-binned maximum likelihood fit on B[±] invariant mass spectrum using per event mass errors
 - $-B^{\pm}$ yield and computation of its uncertainties


Motivation

Standard Model

- − $B_s \rightarrow \mu^+ \mu^-$ forbidden at tree level
- Lowest order contributions are CKM suppressed
- $-\mathscr{B}(B_s \to \mu^+ \mu^-)$ is small
- Standard Model extensions
 - $\mathcal{B}(B_s \to \mu^+ \mu^-)$ considerably enhanced

	Limit on $\mathscr{B}(\!B_s o \mu^+ \mu^-)$) Data
SM expectation	$(3.2 \pm 0.2) \times 10^{-9}$	
DØ	5.1 × 10 ⁻⁸ @ 95% CL	6.1 fb ⁻¹
CDF	4.0 × 10 ⁻⁸ @ 95% CL	7 fb ⁻¹
LHCb	1.3 × 10 ⁻⁸ @ 95% CL	0.3 fb ⁻¹
CMS	1.9 × 10⁻8 @ 95% CL	1.14 fb ⁻¹
LHC combined	1.08 × 10 ⁻⁸ @ 95% CL	

[AJ Buras, Acta Phys. Polon. B41:2487-2561, 2010]

[FERMILAB-PUB-10-202-E]

[FERMILAB-PUB-11-315-E]

[EPS-HEP, 2011]

[CMS-BPH-11-002]

[LHCb-CONF-2011-047]

The $B^{\pm} \rightarrow J/\psi K^{\pm}$ (Reference) Channel

- $N_{B\pm}$ required for estimating branching ratio of $B_s \rightarrow \mu\mu$
- Two muons in final state (from J/ψ decay) and a charged track
- Baseline cuts applied to both channels should be similar
- Hence, most systematic uncertainties will cancel out:

$$\mathscr{B}\left(B_{s}\to\mu^{+}\mu^{-}\right) = \frac{N_{B_{s}}}{N_{B^{+}}} \frac{\alpha_{B^{+}}}{\alpha_{B_{s}}} \frac{\varepsilon_{B^{+}}}{\varepsilon_{B_{s}}} \frac{1}{\varepsilon_{N}} \frac{f_{u}}{f_{s}} \mathscr{B}\left(B^{+}\to J/\psi K^{+}\right) \cdot \mathscr{B}\left(J/\psi\to\mu^{+}\mu^{-}\right)$$

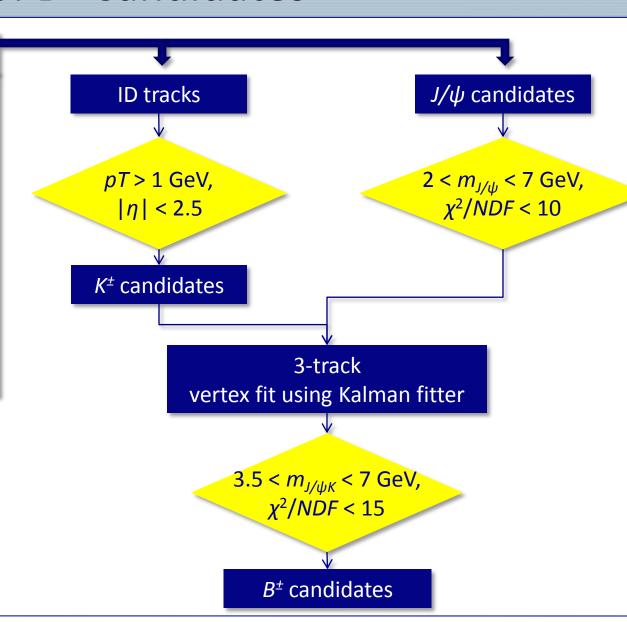
Acceptance ratio

Trigger, reconstruction and selection efficiencies

Ratio of $b \rightarrow B^+$ to $b \rightarrow B_s$

Final signal selection efficiency

Pre-selection of B[±] Candidates

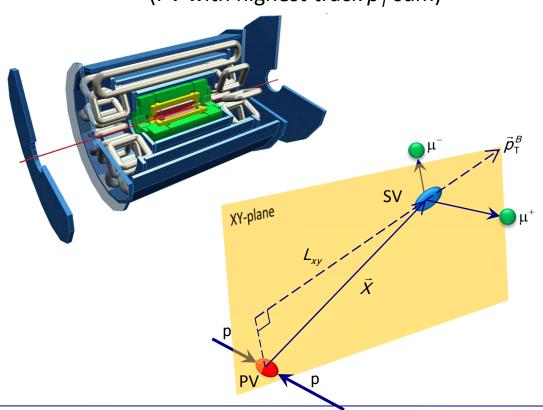


pp collisions data

- √s = 7 TeV
- ∫ Ldt = 2.42 fb⁻¹

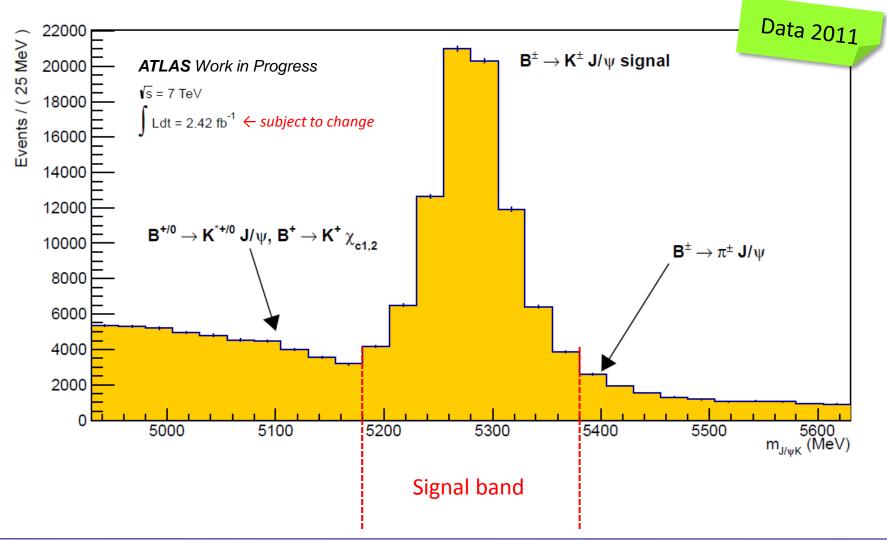
 ↑ subject to change

 (Mar 22 Aug 21, 2011)
- Good run selection based on data quality
- Events chosen by a topological muon trigger (p_{T,µ1} ≥ 4 GeV; p_{T,µ2} ≥ 2 GeV)

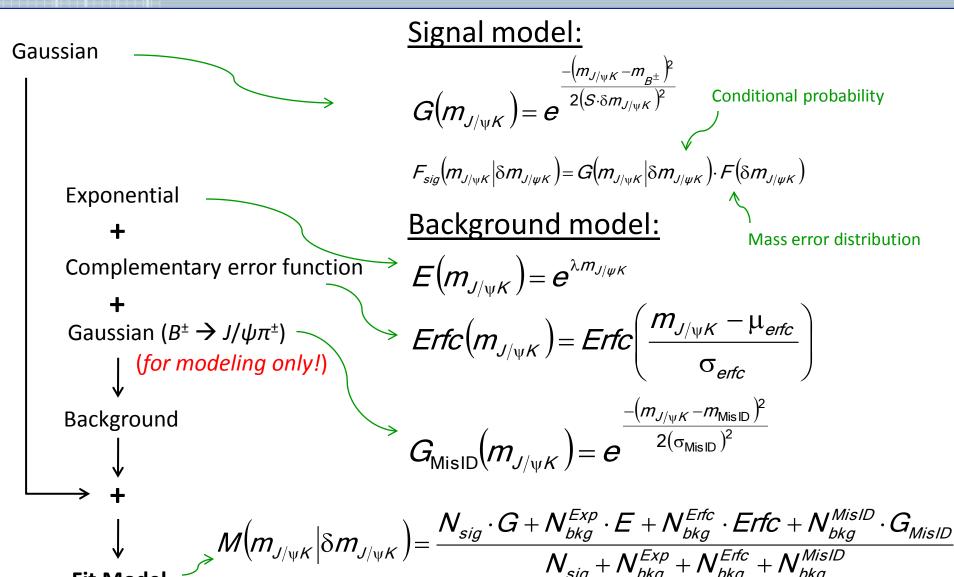


B[±] Selection Cuts

- J/ψ selection
 - $p_{T,\mu 1} \ge 4.0 \text{ GeV}$, $p_{T,\mu 2} \ge 4.0 \text{ GeV}$
 - Muons reconstructed in inner detector as well as muon spectrometer
 - $-2.915 \le m_{J/\psi} \le 3.275 \text{ GeV}$
 - Vertex $\chi^2/NDF \le 10$
- *K*[±] selection
 - $p_{T,K}$ ≥ 2.5 GeV
- Cuts on all three tracks
 - Pixel hits ≥ 1
 - Silicon tracker hits ≥ 6


- B^{\pm} selection
 - $-4.930 \le m_B \le 5.630 \text{ GeV}$
 - − Vertex $\chi^2/NDF \le 6$
 - L_{xy} ≥ 0.3 mm (PV with highest track p_{τ} sum)

B[±] Mass Spectrum

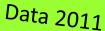


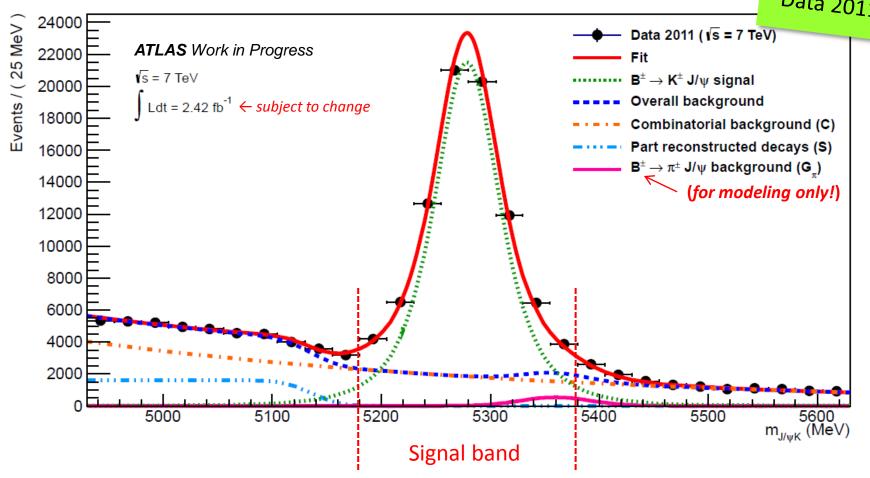
B[±] invariant mass distribution after selection:

Maximum Likelihood Fit Model (M)

Fit Mode

Maximum Likelihood Fit


Likelihood function:

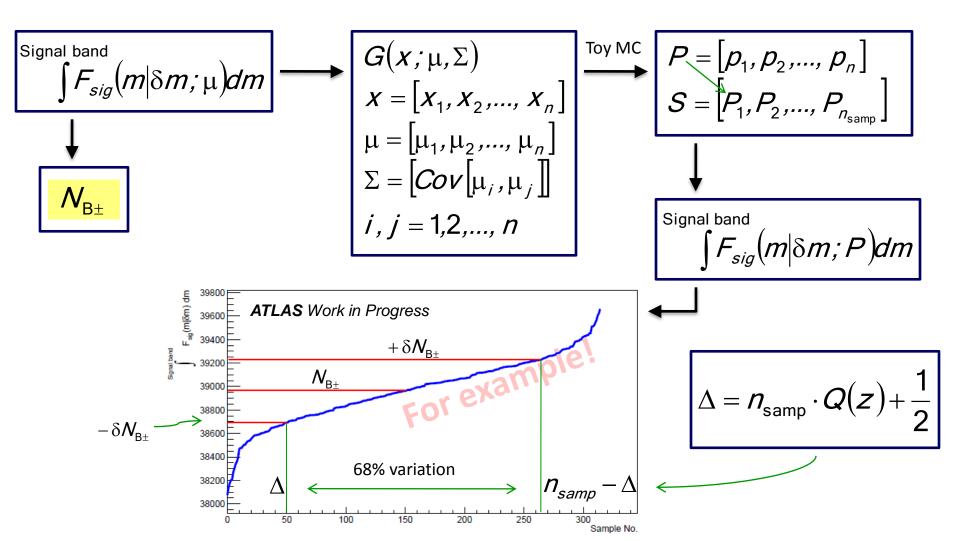

$$-\log \mathcal{L} = -\sum_{i} \log \mathcal{M} \left(m^{i}_{J/\psi K} \mid \delta m^{i}_{J/\psi K} \right) - \log \mathcal{P}oisson \left(\mathcal{N}_{exp} \mid \mathcal{N}_{obs} \right)$$

- ML fit is un-binned
- Uses vertex fit mass ($m_{J/\psi K}$) and mass errors ($\delta m_{J/\psi K}$)
 - B[±] candidates in mass range: [4930, 5630] MeV
 - B^{\pm} candidates (after selection cuts): 145820

Maximum Likelihood Fit

B[±] yield in 'full range':

74356 ± ?? $N_{\mathrm{B}\pm}$:


yield in 'signal band':

70849 ± ?? $N_{\rm B\pm}$:

Computation of Uncertainties

Using a sampling method as used in RooAbsReal::plotOnWithErrorBand()

See next slide for def. —

Computation of Uncertainties

Signal band

$$\int F_{sig}(m|\delta m;\mu)dm$$

Integral (in signal band) of the signal model used in the fit (slide #8)

$$N_{\rm B\pm}$$

Number of signal events in signal band

$$+\,\delta {\pmb N}_{\!\scriptscriptstyle B\pm},\,-\,\delta {\pmb N}_{\!\scriptscriptstyle B\pm}$$

Asymmetric error on N_{B±}

n

Number of fit parameters

$$\mu = [\mu_1, \mu_2, ..., \mu_n]$$

Fit parameter vector

$$\Sigma = \left[Cov \left[\mu_i, \mu_j \right] \right]$$

Fit covariance matrix of size $n \times n$

$$G(x; \mu, \Sigma)$$

n-dimensional multivariate Gaussian of fit parameters

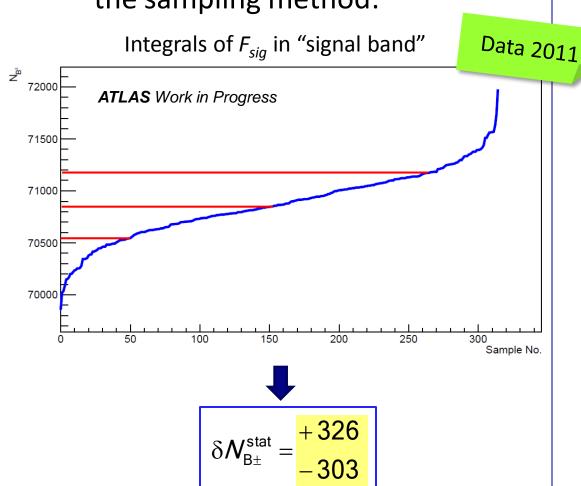
$$P = [p_1, p_2, ..., p_n]$$

Vector of parameters after a toy MC experiment

$$S = \left[P_1, P_2, ..., P_{n_{\text{samo}}}\right]$$

Sample set: set of P vectors after n_{samp} experiments

Z

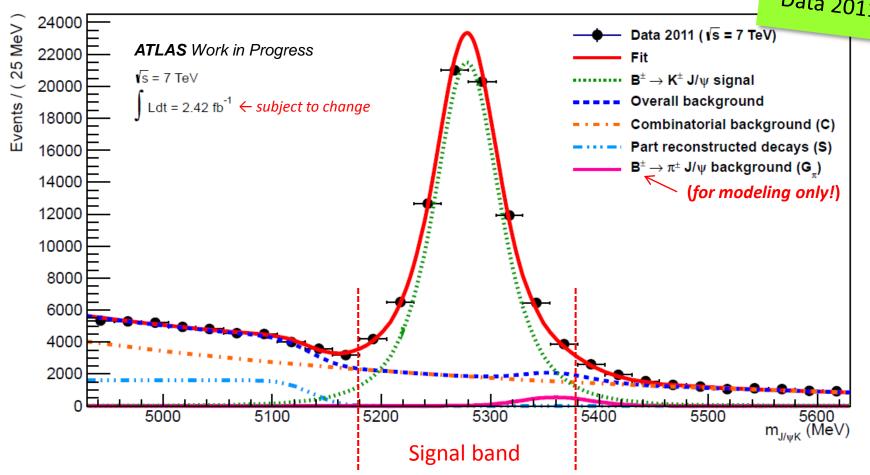

Significance level (z = 1 implies 68% variation in central band)

p-value; Q-function is defined as $Q(z) = \frac{1}{\sqrt{2\pi}} \int_{z}^{\infty} e^{-t^2/2} dt$

Computation of Uncertainties

• Statistical uncertainty using the sampling method:

- Systematic uncertainty:
 - Yield estimate variation
 when a polynomial
 model is used for the
 combinatorial
 background instead of an
 exponential:


$$\delta N_{B\pm}^{syst} = 71951-70849$$

$$= +1102$$

Maximum Likelihood Fit

Data 2011

<u>B[±] yield in 'full range':</u>

+ 394 N_{B±}: 74356 - 315

B[±] yield in 'signal band':

 $N_{\rm R+}$: 70849 (stat) + 1102 (syst) - 303

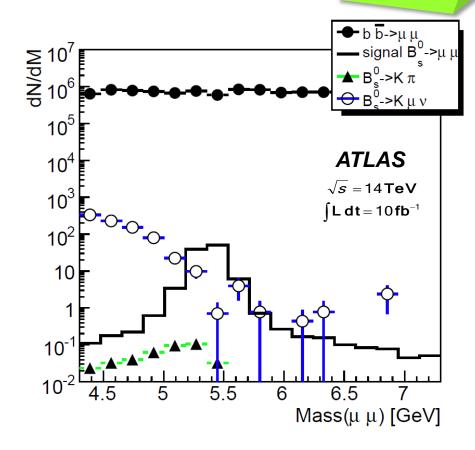
Summary

- ATLAS will measure $\mathscr{B}(B_s \to \mu^+ \mu^-)$ using $B^\pm \to J/\psi K^\pm$ as the reference channel
- B[±] yield is determined from un-binned maximum likelihood fit on 2011 data using per event errors
 - B^{\pm} yield estimate (in signal band): 70849 + 326 303 (stat) + 1102 (syst)
 - Statistical uncertainty takes into account the uncertainties in fit parameters and their correlations
 - Systematic uncertainty due to choice of background model is 1.5% (insignificant compared to the uncertainty in the f_s/f_u ratio ~7.9%)

[LHCb-CONF-2011-034]

• A paper on expected limit on $\mathscr{B}\!\left(\!B_{\!s}\to\mu^{\!\scriptscriptstyle{+}}\mu^{\!\scriptscriptstyle{-}}\right)$ is being prepared

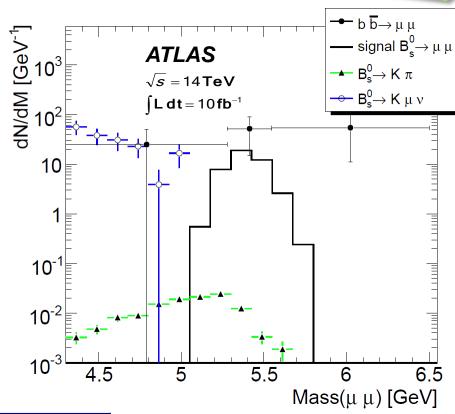
Extra Slides


$B_s \rightarrow \mu^+ \mu^-$ Studies in ATLAS

Selection of the B_s

- Pre-selection cuts:
 - $\mu^{+}\mu^{-}$ pairs: $p_{T,\mu 1} \ge 6.0 \text{ GeV},$ $p_{T,\mu 2} \ge 4.0 \text{ GeV},$ $|\eta| < 2.5$
 - Vertex fit $\chi^2/NDF < 10$
 - Transverse decay length L_{xy} < 20 mm
 - $-4 \text{ GeV} < m_{\mu\mu} < 7.3 \text{ GeV}$

[CERN-OPEN-2008-020]


$B_s \rightarrow \mu^+ \mu^-$ Studies in ATLAS

14TeV MC

Selection of the B_s

- Selection cuts:
 - $-I_{\mu\mu} > 0.9$
 - $L_{xy} > 0.5 \text{ mm}$
 - $\alpha < 0.017 \text{ rad}$
 - Mass in[$-\sigma$,2 σ], σ = 90 MeV

Selection efficiencies:

	$B_s \rightarrow \mu^+\mu^-$	$b\bar{b} \rightarrow \mu^+\mu^- X$ (background)
Total efficiency	0.04	$(2.0 \pm 1.4) \cdot 10^{-6}$
Event yield	5.7	14 ⁺¹³ ₋₁₀

[CERN-OPEN-2008-020]

Fit Results

• Fit results for the fit on slide #10

λ :	-0.002251 ± 0.000057
μ_{erfc} :	5135.5 ± 1.8
$\sigma_{ m erfc}$:	29.8 ± 4.1
$\mu_{{\mathsf B} o{\mathsf J}/\psi\pi}$:	5360 (fixed)
$\sigma_{{ m B} o { m J/}\psi\pi}$:	31.6 ± 3.3
N _{bkg} Exp:	56654 ± 1045
N _{bkg} Erfc:	13131 ± 802
N _{bkg} Β→J/ψπ:	1680 ± 197
N_{sig} :	74356 ± 377
$m_{{\scriptscriptstyle \mathrm{B}\pm}}$:	5278.66 ± 0.16
S :	1.160 ± 0.005
χ^2/NDF :	4.314