

Validation of Geant4 hadronic models using AHCAL test beam data

Mark Terwort Helmholtz Alliance Workshop, Bonn December 7th, 2011

- Hadron showers and calorimeters
- Validation of hadronic shower models
 - Shower shapes and sub-structure
 - Energy resolution, compensation
 - Particle flow with test beam data
- Summary

Physics goal: Separation of hadronic W, Z decays

- \rightarrow Jet energy resolution: $\Delta E/E = 30\%/sqrt(E)$
- → Particle Flow: Detect each particle in a jet, high granularity required

Calorimeter requirements

DESY

- Very high granularity required for Particle Flow
 - \rightarrow ECAL: Cell size < Moliere radius, longitudinally < 1X_0
 - \rightarrow HCAL: Cell size \sim Moliere radius, longitudinally $\sim 1X_0$
- Explosion of channel count
 - → ECAL: ~ 100 M
 - \rightarrow HCAL: \sim 10 M

Questions:

- Can such detectors be built?
- What is their performance?
- Which reconstruction techniques are possible?
- Can such detectors be calibrated and operated in stable mode?
- What are the relative merits of different read out techniques?
- Can we trust the simulations?
 - → Extensive test beam programs needed!

Factor of 1000 more than typical LHC calorimeters!

Intermediate task: Understand test beam data and validate Geant4 models (See Julians talk for latest test beam activities and 2nd generation prototypes)

Focus in Germany:

Analog hadron calorimeter, 3x3x0.3cm³ scintillator tiles read out by silicon photomultipliers

Validation with electron data

• Linear response

(3% non-linearity > 30 GeV)

Electromagnetic scale

- Fermilab
 - (41.7 ± 0.3) MIP / GeV
- CERN
 - (42.3 ± 0.4) MIP / GeV
- Digitized Monte Carlo
 (42.0 ± 0.4) MIP / GeV

Hadronic showers are difficult to describe due to fluctuating electromagnetic fraction and invisible energy depositions!

Simulation of hadronic showers

- **Geant4**: Software toolkit for simulating particle interactions with matter
- Different models for inelastic hadron scattering on atomic nuclei
 - \rightarrow **Cascade models**: quark substructure can be neglected

 \rightarrow **Parton String models**: energies above 5 GeV, quarks become relevant

MC simulations

- **Mokka:** Geant4 application able to simulate full ILD detector and TB setup
- Geant4 simulation organized in physics lists combining several models valid at different energies
 - \rightarrow Unphysical steps between model validity ranges
- Develop physics lists without LHEP as stop gap
- Develop models for full energy range (CHIPS)

Reconstructed energy

- Compare reconstructed energy in data with MC predictions
- FTFP_BERT list works best

Longitudinal shower shape

- High granularity allows to measure shower shapes in detail
- Measurement sensitive to electromagnetic fraction of cascades

Radial shower profile

DESY

- High granularity allows to measure shower shapes in detail
- Measurement sensitive to electromagnetic fraction of cascades

Track segments

- High granularity also allows measurements of shower sub-structures
- Here: number of track segments

 \rightarrow Underestimated by all MC models!

13/17

Energy resolution

- In spite of imaging capability: Need to measure **shower energy**!
 - → Linearity?
 - \rightarrow Energy resolution?
- Energy dependent electromagnetic fraction requires compensation
 - → Improvement of resolution?

Stochastic term improved from ~58% to ~45%

Compensation – MC vs data

Local compensation

Global compensation

Local:

MC describes data well

Global:

MC predicts further improvement above 40 GeV

Particle Flow with test beam data

Test MC models with important particle flow analysis!

Method:

- Take 2 pion events and map them to ILD geometry
- Assume one is neutral
- Vary distance between the 2 pions and test how well the energy of neutral pion is reconstructed

Confusion depends on radial distance between showers and their energy

 \rightarrow Good agreement between data and MC

- High granularity of the CALICE analog HCAL offers unique possibility to investigate hadronic showers
- MC application shown for different aspects of data analysis
 - Spatial shower information, shower sub-structure
 - Energy resolution, compensation
 - Application of particle flow algorithm to test beam data
- All german CALICE groups involved in data analysis
- Active collaboration with Geant4 people