Top mass measurement with the CLIC_ILD detector at 500 GeV

Stephane Poss¹, Frank Simon^{2,3}, <u>Katja Seidel^{2,3}</u>

¹CERN, Geneva, Swizerland ²MPI for Physics, Munich, Germany ³Excellence Cluster 'Universe', Munich, Germany

5th Annual Helmholtz Alliance Workshop Bonn, 07.-09.12.2011

Top mass measurement with CLIC_ILD at 500 GeV 5th Annual Helmholtz Alliance Workshop, Bonn, 07.12.2011

Outline

- CLIC Introduction
 - Machine and Detector
 - CLIC background conditions
 - Event simulation and reconstruction
- Analysis Chain
 - Decay channel selection
 - Event topology reconstruction
 - Physical Background rejection
- Final results for CLIC CDR
- Summary

CLIC and CLIC_ILD

Machine:

- e+e- machine
- design $\sqrt{s} = 3 \text{ TeV}$
- different energies possible
- staged construction

Detector:

- Here: CLIC_ILD
- Optimized for Particle Flow
 - excellent tracking detectors
 - high granular calorimeter
 - time stamping capability

3

Top mass measurement with CLIC_ILD at 500 GeV 5th Annual Helmholtz Alliance Workshop, Bonn, 07.12.2011

test SM and LHC results with high precision search for physics beyond SM / LHC

Conditions at CLIC

The bunch structure at CLIC

Beamstrahlung driven by energy and

focusing

For 500 GeV:

- mean bunch:
 - ΔE/E ~ 7%
- coherent e⁺e⁻ pairs:
 - 2.0×10^2 / bunch crossing
- incoherent e⁺e⁻ pairs:
 - 8.0 x 10⁴ / bunch crossing
- $\gamma\gamma \rightarrow$ hadrons interactions:
 - 0.2 / bunch crossing

Top mass measurement with CLIC_ILD at 500 GeV 5th Annual Helmholtz Alliance Workshop, Bonn, 07.12.2011

CLIC Event Reconstruction

CLIC event:

Integration over a full bunch train

• 312 bunches

Reconstruction challenge:

Suppress pile up from $\gamma\gamma \rightarrow$ hadrons interactions ⁰.

- adds significant energy to events
- in particular in the forward region
- not in time with the physics event

Reconstruction Technique: Particle Flow

- Pandora Particle Flow event reconstruction based on geometrical hit assignments
- Application of a combination of timing and pt cuts specially for low p_t particles to reject $\gamma\gamma \rightarrow$ hadron background events
- Different strength of cuts are available for 3 TeV and 500GeV center-of-mass energy

Effect of timing and pt cut strengths

Top physics at CLIC

- Staged construction mode possible: 500 GeV
- Analysis part of the CLIC conceptual design report
- Analysis: Top mass measurement from top pair production
 - full-hadronic channel
 - semi-leptonic channel

Top mass measurement with CLIC_ILD at 500 GeV 5th Annual Helmholtz Alliance Workshop, Bonn, 07.12.2011

6

1 des

$\sqrt{s} = 500 \,\text{GeV}$

v						
type	$e^+e^- \rightarrow$	cross section σ	number of events			
			generated for 100 fb ⁻¹			
Signal	tī	550 fb	$5.5 \cdot 10^{4}$			
Background	WW	7.1 pb	$7.1 \cdot 10^{5}$			
Background	ZZ	410 fb	$4.1 \cdot 10^{4}$			
Background	$q\bar{q}$	2.6 pb	$2.6 \cdot 10^{5}$			
Background	WWZ	40 fb	$4.0 \cdot 10^{3}$			

Classification of decay branch for each event

- depending on number of isolated jets found
- no isolated lepton: full-hadronic decay channel
- one isolated lepton: semi-leptonic decay channel
- more than one isolated leptons: full-leptonic decay channel
 - events rejected

7

Top Pair Branching Fractions

Jet clustering and Flavor Tagging

- Hadron k_t algorithm
 - Exclusive Mode: Force to 4 or 6 jets
 - Jet algorithm helps to reject background
 - R value defines size of jet, cross checked distribution of events without machine background
- Flavor tagging based on LCFI Vertex Package
 - Flavor Tagging is based on a neural net
 - Every jet gets assigned with a b-tag value
 - Jets with highest two b-tag values are chosen to be b-jets

Jet combinatorics

Semi-Leptonic events

- 2 b-jets
- 2 light-jets
- I lepton
- missing energy / neutrino

- Full-Hadronic events
- 4 light-jets
- 2 b-jets
 - Calculation: $|m_{ij} - m_W| + |m_{kl} - m_W|$
- Minimum value defines best permutation

Top mass measurement with CLIC_ILD at 500 GeV 5th Annual Helmholtz Alliance Workshop, Bonn, 07.12.2011

Kinematic Fit

Kinematic fit uses constraints from signal event topology to correct measured properties of decay products

- Constraints for four and six jet events:
 - Energy conservation
 - Momentum conservation
 - W mass equals 80.4 GeV
 - Equal top masses

Kinematic Fit

Kinematic fit uses constraints from signal event topology to correct measured properties of decay products

- Constraints for four and six jet events:
 - Energy conservation
 - Momentum conservation
 - W mass equals 80.4 GeV
 - Equal top masses
 - Use kinematic fit for final Wb pairing
 - Only very clean events pass kinematic fit

Kinematic Fit and Background Rejection

Kinematic Fit

- Powerful Background Rejection for qq, WW, ZZ
- Rejection of unwanted signal events: full-leptonic events, tauevents

Binned likelihood rejection method

- Different input variables to compute a signal likelihood
- Training with independent sample

Kinematic Fit and Background Rejection

Kinematic Fit

- Powerful Background Rejection for qq, WW, ZZ
- Rejection of unwanted signal events: full-leptonic events, tauevents

Binned likelihood rejection method

- Different input variables to compute a signal likelihood
- Training with independent sample

Overall background rejection: > 99% Overall signal selection: Full-Hadronic: 35% Semi-Leptonic: 56%

- Signal efficiency could be improved
- Analysis goal: clean events not amount of statistic

Fit of final distribution

d

Un-binned maximum likelihood fit over full range

- Combination of signal and background pdf
- Signal pdf is a convolution of a Breit Wigner and a detector resolution function

Top mass measurement with CLIC_ILD at 500 GeV 5th Annual Helmholtz Alliance Workshop, Bonn, 07.12.2011

Top Mass for 100 fb⁻¹ with CLIC_ILD at 500 GeV

Summary:

- Low energy version of CLIC also suitable for high precision measurements
 - More details in the CLIC_CDR:

http://lcd.web.cern.ch/LCD/CDR/CDR.html

- Machine background conditions and pile up under control
- Analysis of tt events at 500 GeV with the CLIC_ILD detector for 100 fb⁻¹
- Statistical error of 80-90 MeV on top mass
- Analysis of top mass for full-hadronic and semi-leptonic decay chain of top pairs
- Result comparable with studies for ILD and SiD for ILC at 500 GeV

Top mass measurement with CLIC_ILD at 500 GeV 5th Annual Helmholtz Alliance Workshop, Bonn, 07.12.2011

Machine Comparison

		CLIC	CLIC	ILC
E_{cms}	[TeV]	0.5	3.0	0.5
f_{rep}	[Hz]	50	50	5
f_{RF}	[GHz]	12	12	1.3
G_{RF}	[MV/m]	80	100	31.5
n_b		354	312	2625
Δt	[ns]	0.5	0.5	369
N	$[10^9]$	6.8	3.7	20
σ_x	[nm]	202	40	655
σ_y	[nm]	2.26	1	5.7
ϵ_x	$[\mu m]$	2.4	0.66	10
ϵ_y	[nm]	25	20	40
\mathcal{L}_{total}	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	2.3	5.9	2.0
$\mathcal{L}_{0.01}$	$[10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	1.4	2.0	1.45

Conditions at CLIC: Beamstrahlung Details

- Coherent e⁺e⁻ pairs with angles < 10 mrad
 - Crossing angle and beam pipe opening at CLIC: 20 mrad
 - Outgoing beam: coherent pairs disappear in beampipe
- Incoherent pairs: reduced by solenoidal field, constrain innermost radius of vertex detector

Conditions at CLIC: Beamstrahlung Details

- $\gamma\gamma \rightarrow$ hadrons: ~ 3.2 events / bx,
 - ~ 28 ch. particles in detector acceptance
 ⇒ 15 TeV in detector during bunch train forward peaked

Requires precise time stamping and clever event reconstruction

- Coherent e⁺e⁻ pairs with angles < 10 mrad
 - Crossing angle and beam pipe opening at CLIC: 20 mrad
 - Outgoing beam: coherent pairs disappear in beampipe
- Incoherent pairs: reduced by solenoidal field, constrain innermost radius of vertex detector

CLIC ILD Detector - Main Features

5th Annual Helmholtz Alliance Workshop, Bonn, 07.12.2011

Lepton Finder

- Classification of decay branch for each event Search for isolated leptons in a cone • 10 degree cone opening angle 10 • Lepton energy > 10 GeV • Particles in cone: charged, energy > 2.5 GeV Lepton Lepton Finder No isolated lepton found One isolated lepton found • Full-leptonic decay • Full-hadronic decay • Semi-leptonic decay branch branch
- 6 jets

- branch
- 4 jets, isolated lepton, neutrino

- > I isolated lepton found
- Events rejected

- Seven input variables (Number of particles in event, value of b-tags, sphericity, ...)
- Likelihood cut of 0.6 chosen
- Training with independent sample

Top mass measurement with CLIC_ILD at 500 GeV 5th Annual Helmholtz Alliance Workshop, Bonn, 07.12.2011

20

Full-Hadronic