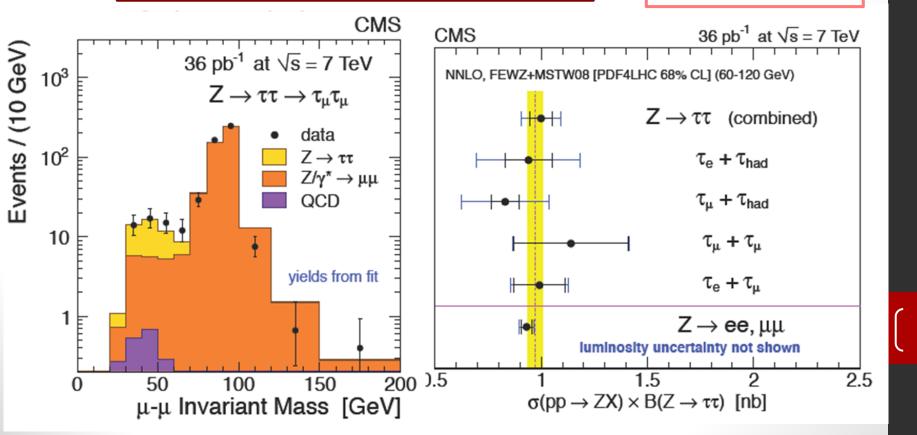


Higgs search in the $H \rightarrow \tau \tau \rightarrow \mu \mu$ channel

Agni Bethani on behalf of the DESY Hamburg-KIT group 5th Annual Workshop of the Helmholtz Alliance 7th Dec 2011, Bonn


In this talk...

- $Z \rightarrow \tau \tau \rightarrow \mu \mu$ analysis
 - Results
- H→ττ→μμ analysis
 - Event selection
 - Likelihood selection
 - Background estimation
 - Embedding method
 - Limits
- Summary

$Z \rightarrow \tau \tau$ production σ measurement

- $Z \rightarrow \tau \tau \rightarrow \mu \mu$ combined with other channels
 - σ= 1.14±0.27(stat)±0.04(syst.)±0.05(lumi.)
- Combined measurement
 - σ= 1.00±0.05(stat)±0.08(syst.)±0.04(lumi.)

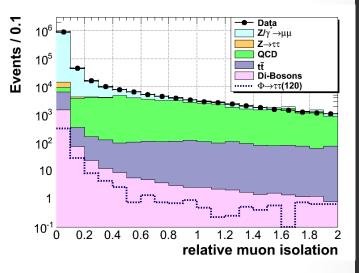
<u>Published</u> CMS-EWK-10-013, JHEP08(2011)117

$H \rightarrow \tau \tau \rightarrow \mu \mu$ analysis

- Total analysed luminosity: L=2.05 fb⁻¹
- Trigger selection:

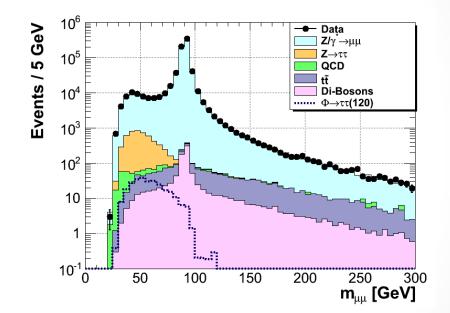
Trigger	Luminisity, fb ⁻¹
HLT_IsoMu17	1.38
HLT_Mu13_Mu8	0.67

• MC samples:

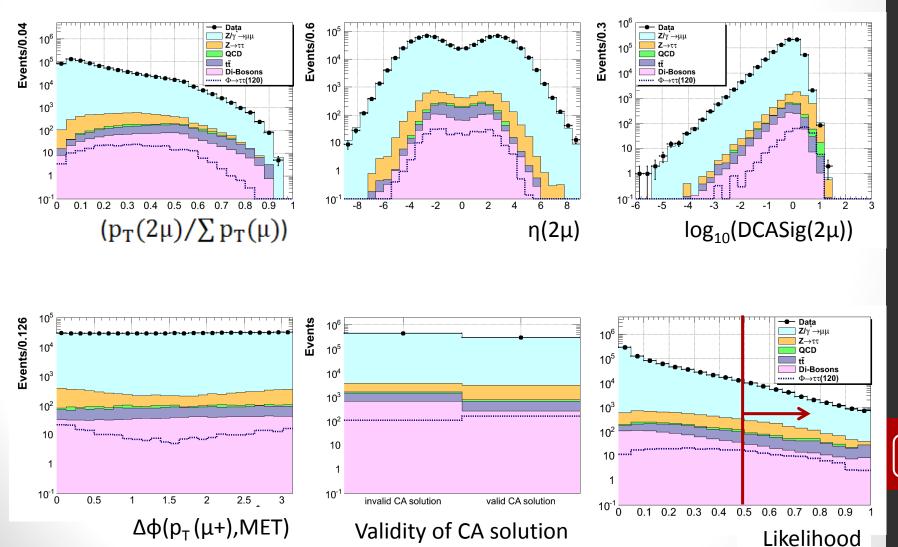

Process	Generator
DY→II	Madgraph+TAUOLA
TTJets	Madgraph
WJets→lv	Madgraph
QCD	Pythia
SUSY BBH→ττ	Powheg + Pythia+TAUOLA
SUSY /SM gg→H→ττ	Powheg + Pythia+TAUOLA
VBF H→ττ	Pythia

5

Muon Selection


- Opposite sign muons
- Requirements for "good" PV and muon track quality
- |η|<2.1 (2.4) for the leading (sub-leading) muon
- p_T >20 (10) GeV for the leading (sub-leading) muon
- ΔΦ>2 (rejects QCD events)
- Isolation <0.1 (0.15) for muons with p_T >(<)15GeV/c (ΔR<0.4)

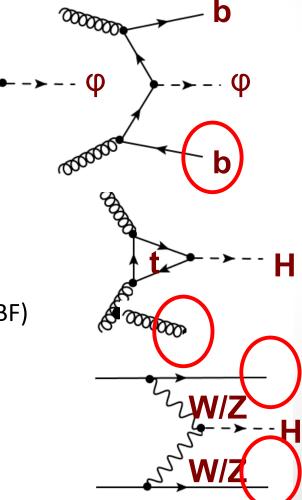
•
$$Iso_{\mu}^{\text{PF}} = \frac{\Sigma(p_T^{charged} + p_T^{\gamma} + p_T^{neutral})}{p_T^{\mu}}$$



Likelihood selection

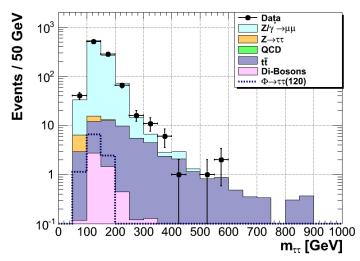
- Preselected dimuon event sample is dominated by DY background
- MVA technique
 - $Prob(j) = \prod_{i=1}^{m} f(j, x_i)$
 - $L(j) = \frac{Prob(j)}{\sum_{k=1}^{3} Prob(k)}$
- 3 event classes (j)
 - Z/γ^{*}→μμ
 - Ζ→ττ
 - Φ→ττ→μμ signal
- Discriminating variables (x_i)

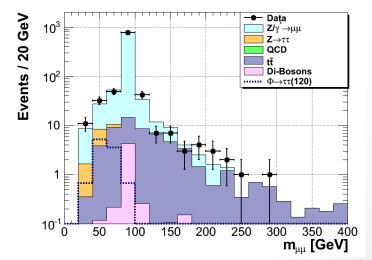
Discriminating variables


WORK IN PROGRESS

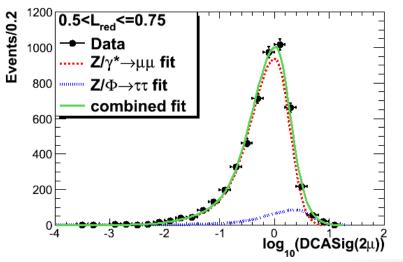
8

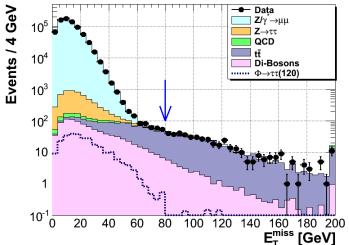
Event Categories


- Jet related variables are exploited in order to identify different Higgs production mechanisms
- Event Categorisation (MSSM)
 - bb
 production (MSSM)
 - B-Tag (at least one b jet)
 - No B-Tag (no b jets)

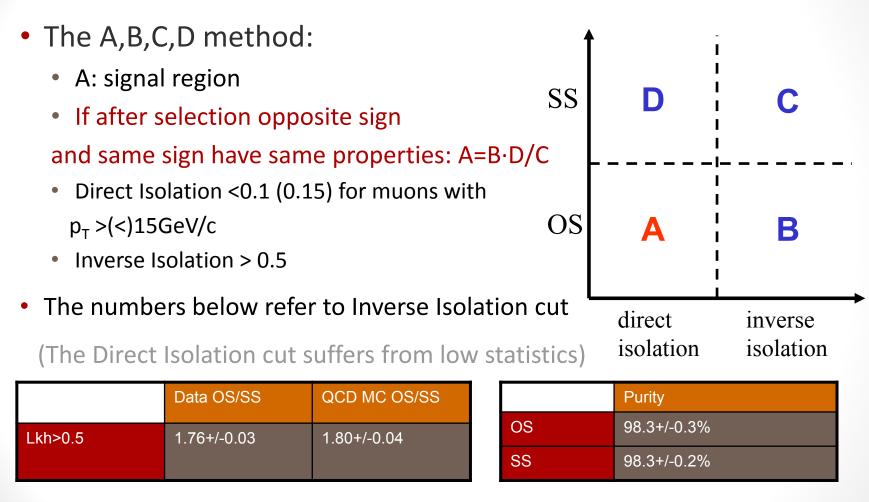

- Event Categorisation (SM)
 - Vector boson fusion Higgs production (VBF)
 - Boosted Higgs (NEW!)
 - One or no jets Gluon fusion

SVFit ditau mass reconstruction


- Secondary Vertex Fit (SVfit) is a novel algorithm for tau pair invariant mass reconstruction that utilizes kinematics of tau decay and reconstructed missing transverse momentum. (introduced by CMS)
- This variable together with the visible dimuon mass are used for the statistical analysis. (In the form of 2D distributions)


DY background evaluation

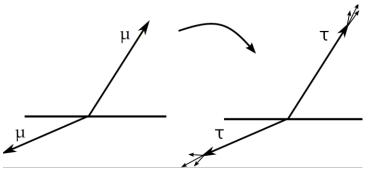
- By exploiting the difference in the shapes of the intermuon DCA significance between:
 - Z/γ^{*}→μμ
 - $Z \rightarrow \tau \tau$ and $\Phi \rightarrow \tau \tau \rightarrow \mu \mu$ signal
- The DY background is estimated in 3 dimuon mass regions
 - m<70GeV/c² (Ζ→ττ contribution)
 - 70 GeV/c² < m < 130 GeV/c² (Z peak)
 - m>130 GeV/c²
- New "reduced" likelihood constructed by the same variables except DCA significance
- 4 Bins of L_{red} are considered
 - In the range (0,1)-step 0.25
- DCA significance distributions are fitted in the [L_{red}, M_{uu}] bins
 - $Z/\gamma^* \rightarrow \mu\mu$ is parametrised in the Z peak (80 GeV/c² < m <100 GeV/c²)
 - $Z \rightarrow \tau \tau$ and $\Phi \rightarrow \tau \tau \rightarrow \mu \mu$ signal parametrisation is taken from MC



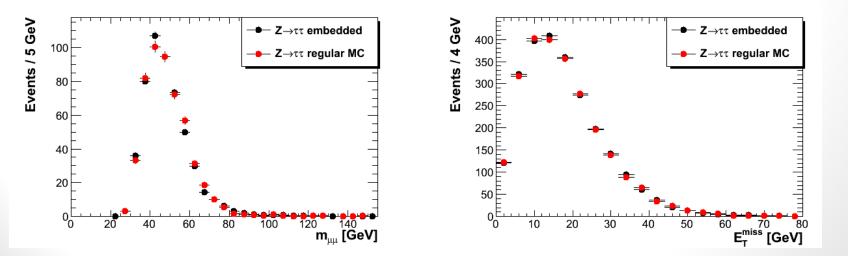
TTBar background evaluation

- TTBar is extrapolated from control region dominated by TTBar background
 - MET> 80 GeV
 - After preselection
 - Purity > 97%
 - Fits of DCASig(2µ) for TTBar and heavy resonance decays
 - Templates derived from MC
 - Normalisation for the TTBar contribution extracted from the fit

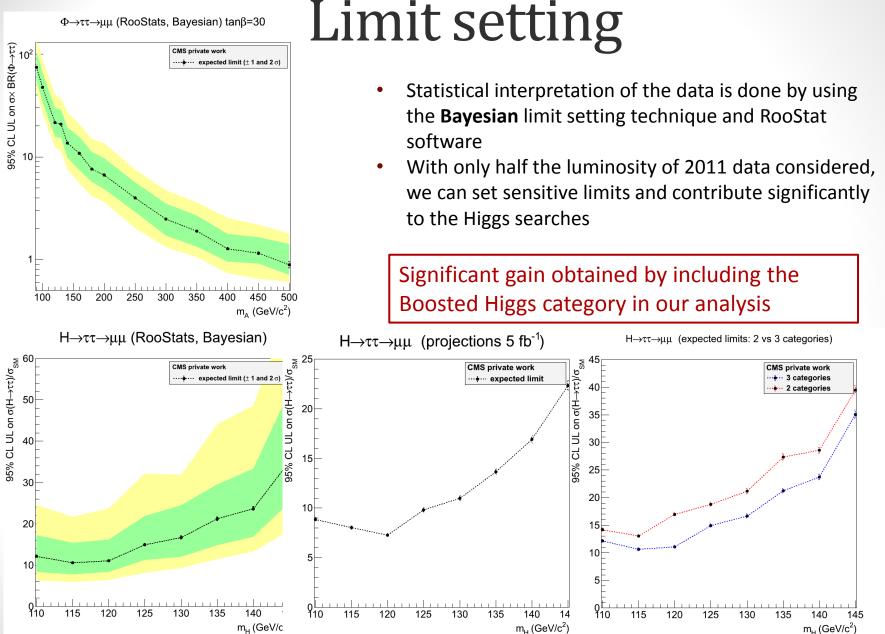
QCD Background evaluation



WORK IN PROGRESS


QCD events in the final sample: 69.2 +/- 11.9

Embedding method


- Thanks to Armin Burgmeier and Manuel Zeise
- In a Z→µµ data the two muons are replaced with simulated taus . (Method implemented in CMS by the KIT group)

• $Z \rightarrow \tau_{\mu} \tau_{\mu}$ embedded sample is used to model mass shapes

 $\Phi \rightarrow \tau \tau \rightarrow \mu \mu$ (RooStats, Bayesian) tan β =30

Summary

- $H \rightarrow \tau \tau \rightarrow \mu \mu$ analysis is performed for 5 categories of events:
 - Event Categorisation (MSSM)
 - B-Tag
 - no B-Tag
 - Event Categorisation (SM)
 - Vector boson fusion
 - Boosted higgs (NEW!)
 - One or no jets Gluon fusion
- Background contributions are evaluated in data driven ways or using the embedding method
- Limits for the Higgs boson production are set

Thank you for your attention

Backup

16

WORK IN PROGRESS

Jets and B-Tagging

- Jet related variables are exploited in order to identify different production mechanisms
- Event Categorisation (MSSM)
 - bbΦ production (MSSM)

B-Tag category	no-BTag category
≥ 1 b-jets	no b-jets
< 2 jets with p_T >30 GeV/c	< 2 jets with p_T > 30 GeV/c

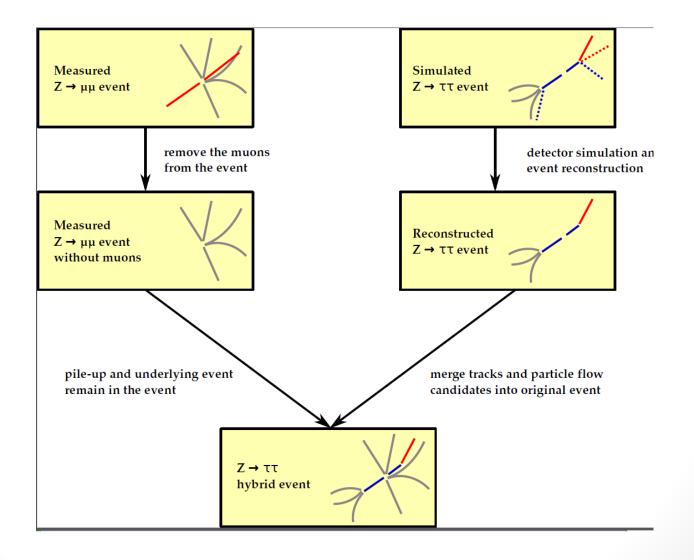
- Event Categorisation (SM)
 - Vector boson fusion
 - Boosted higgs (NEW!)
 - One or no jets Gluon fusion

SM Higgs Boson

Vector Boson Fusion Analysis (VBF)

- Event selection
 - at least two jets with $p_T > 30$ GeV/c and $|\eta| < 4.5$
 - jets in opposite hemispheres: $\eta_1\eta_2 < 0$
 - m_{ii} > 400 GeV/c²
 - |Δη_{jj}|>4.0
 - no jets with p_T > 30 GeV/c in the rapidity gap between the two leading jets
- Muon selection
 - The higgs produced may have very high \mathbf{p}_{T}
 - $|\Delta \Phi|$ cut dropped $m_{\mu\mu}$ > 20 GeV/c instead

SM Higgs Boson


Boosted Higgs Analysis

- Highly boosted Higgs boson
- May happen :
 - in the Higgs associated production with t,Z or W
 - gluon fusion with initial radiation of hard gluon
- Events with only one jet with: $p_T > 150 \text{ GeV/c}$

One or no jets

- Higgs produced by gluon fusion
- Events with 0 or 1 jet with: 30 GeV/c< $p_T < 150$ GeV/c

Embedding method

