LHC Higgs Cross section recommendations and Search for MSSM Higgs bosons in the $\tau\tau \rightarrow e\mu + 4\nu$ final state with ATLAS

Markus Warsinsky

Albert-Ludwigs-Universität Freiburg

Cal

Cross Section Recommendations

LHC Higgs Cross Section WG

- Theorists and experimentalists working together on giving recommended cross sections and recipes for uncertainties to the community
- First Yellow Report on inclusive cross sections published this year: CERN-2011-002
- ► Currently working on Yellow Report 2 ⇒ differential distributions

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

> Handbook of LHC Higgs cross sections: 1. Inclusive observables

Report of the LHC Higgs Cross Section Working Group

Editors: S. Dittmaier C. Mariotti G. Passarino R. Tanaka

GENEVA

- https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections
- This talk: short overview on cross sections for neutral MSSM Higgs bosons, see also this twiki page: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/MSSMNeutral

The Minimal Supersymmetric Standard Model (MSSM): Higgs-Sector in a Nutshell

- ▶ 2 Higgs doublets \Rightarrow 5 physical Higgs bosons: h, H, A, H^{\pm}
- Tree level: completely fixed by $M_A, \tan\beta$ (ratio of the two VEVs)
- higher orders: 105 additional parameters \Rightarrow reduce to 5 parameters
- fix these in benchmark scenarios, e.g. MHMAX

- \blacktriangleright always h or H mass degenerate with A
- ► mass degenerate Higgs bosons have enhanced couplings to down-type fermions ⇒ changed production cross sections!

Gluon-Gluon-Fusion for MSSM Higgs Bosons

- bottom-loop also important for high tan β
- squark-loops important if squarks are light (not the case in MHMAX)

$$g \longrightarrow t, b, \tilde{t}, \tilde{b} \longrightarrow \cdots \cdots \cdots \to h, H, A$$

$$g \longrightarrow \phi) + \left(\frac{g_{b}^{MSSM}}{a^{SM}}\right)^{2} \sigma_{bb}(gg \to \phi)$$

$$\begin{split} \sigma^{MSSM}(\mathrm{gg} \to \phi) &= \left(\frac{g_{\mathrm{t}}^{MSSM}}{g_{\mathrm{t}}^{SM}}\right)^2 \sigma_{\mathrm{tt}}(\mathrm{gg} \to \phi) + \left(\frac{g_{\mathrm{b}}^{MSSM}}{g_{\mathrm{b}}^{SM}}\right)^2 \sigma_{\mathrm{bb}}(\mathrm{gg} \to \phi) \\ &+ \frac{g_{\mathrm{t}}^{MSSM}}{g_{\mathrm{t}}^{SM}} \frac{g_{\mathrm{b}}^{MSSM}}{g_{\mathrm{b}}^{SM}} \sigma_{\mathrm{tb}}(\mathrm{gg} \to \phi), \end{split}$$

0

- NLO contribution to σ_{tt}, σ_{tb}, σ_b: HIGLU, with complete quark mass dependence
- NNLO contribution on top for σ_{tt} from ggh@NNLO (infinite top mass), numerically small for high tan β
- masses and couplings from FeynHiggs

5 / 21

b-Quark-Associated Production for MSSM Higgs Bosons

- high $\tan \beta \Rightarrow$ b-associated production important!
- use SM-like cross section and rescale to MSSM (very good approximation)
- two calculational approaches:

- retain complete b kinematics
- potentially large collinear logs
- available in NLO QCD

- resum large logs into b-PDF
- ▶ zero $p_{\rm T}$ at LO
- available in NNLO QCD
- should agree if calculated at sufficiently high order of perturbation theory

- but at finite order still differences, especially for high masses
- Which cross section to use?

Santander Matching

- Harlander, Krämer, Schumacher (CERN-PH-TH/2011-134)
- heuristic reweighting

$$\sigma^{\text{matched}} = \frac{\sigma^{\text{4FS}} + w \cdot \sigma^{\text{5FS}}}{1 + w}$$
$$w = \ln \frac{m_H}{m_H} = 2$$

$$w = \ln \frac{m_H}{m_b} - 2$$

- Iow masses: equally 4 and 5FS
- very high masses: 5FS dominant

agreed between experiments and theorists to use this for now!

- linear weighting/addition of scale and PDF uncertainties
- very close to each other for low masses, high masses dominated by 5FS, as expected/constructed

Overall Picture

- Inclusive cross sections for these two production channels available from TWIKI
- simple accessor tool (based on ROOT) to simply plug-in to any analysis
- \blacktriangleright available for: MHMAX, MHMAX variants with different μ and for the no-mixing scenario

Future Updates: Differential Distributions

- currently working on Yellow Report 2: Differential Distributions
- should be available for Xmas
- studies on Higgs- $p_{\rm T}$, b-jet $p_{\rm T}$, ...
- here only one preview based on arXiv:1111.2182 [hep-ph]

Preview on Differential Distributions: Higgs + 1 Jet

- "Jet-veto in bottom-quark induced Higgs production at next-to-next-to-leading order" (R. Harlander and M. Wiesemann, arXiv:1111.2182 [hep-ph])
- Calculation of H + n jet $(n = 0 \text{ and } n \ge 1)$ and H + nb jet (n = 0, 1, 2)
- very useful for present and upcoming analyses which will separate into at least one b-tagged jet, at least one non-b-tagged jet and exactly zero jets

Search for $h/H/A \rightarrow \tau \tau$ with ATLAS

- \blacktriangleright concentrating on $\tau\tau \rightarrow e\mu + 4\nu$ final state
- ► analysis of other final states $(\ell \tau_{had}, \tau_{had} \tau_{had})$ shown in talk by Thomas Schwindt
- ▶ ATLAS-CONF-2011-132 based on $\approx 1.1 \, {\rm fb}^{-1}$ of data

- rest of 2011 data being analyzed at the moment
- ▶ Analysis of 2010 data ($\approx 35 \, \mathrm{pb}^{-1}$) published in Phys. Lett. B705 (2011) 174-192, not shown here, but very similar analysis

Motivation

- MSSM @ high $\tan \beta$:
- dominant decay to bb: fully hadronic final state, very difficult
- ▶ BR(A/h) or $BR(A/H) \rightarrow \tau \tau \approx 10\%$, but easier signature
- $\tau_{had}\tau_{had}$: largest BR, but also fully hadronic
- ► \(\tau_{had} + e\) or \(\tau_{had} + \mu\): easier to trigger, cleaner sample
- *ll* cleanest final state, but smallest BR
- also can reach down to lower $p_{\rm T}$ with electrons and muons \Rightarrow expected to be more relevant at low Higgs boson masses

Signature

- ATLAS searches for MSSM Higgs bosons so far: fully inclusive in jet multiplicity, b-tagging not utilized yet
- this talk: only eµ final state
 - 1 isolated electron, 1 isolated muon and rather small E^{miss}_T

Backgrounds

- ► $Z \rightarrow \tau \tau \rightarrow e\mu + 4\nu$: irreducible (shapes after presel. taken from data)
- ► $t\bar{t} \rightarrow WWb\bar{b} \rightarrow e\mu + 2\nu + b\bar{b}$: harder leptons, higher $E_{\rm T}^{\rm miss}$ (MC@NLO)
- Single-top (AcerMC/MC@NLO)
- Diboson production (MC@NLO)
- QCD: estimated from data

Signal process	$\sigma \times BR \ [pb]$
$b\bar{b}A/H/h(\rightarrow \tau\tau), m_A = 120 \text{ GeV}$	7.62/0.69/7.3
$gg \rightarrow A/H/h(\rightarrow \tau \tau), m_A = 120 \text{ GeV}$	4.93/2.21/4.1
$b\bar{b}A/H/h(\rightarrow \tau\tau), m_A = 200 \text{ GeV}$	0.49/0.49/0.02
$gg \rightarrow A/H/h(\rightarrow \tau \tau), m_A = 200 \text{ GeV}$	0.13/0.16/0.46
$b\bar{b}A/H/h(\rightarrow \tau\tau), m_A = 300 \text{ GeV}$	0.02/0.03/0.002
$gg \rightarrow A/H/h(\rightarrow \tau \tau), m_A = 300 \text{ GeV}$	0.003/0.005/0.11
Background process	σ [pb]
$W \rightarrow \ell \; (\ell = e, \mu, \tau)$	10.5×10^{3}
$Z/\gamma^* \rightarrow \ell^+ \ell^- \ (m_{\ell\ell} > 10 \text{ GeV})$	4.96×10^{3}
tī	165
Single-top (t-, s- and Wt-channels)	58.7, 3.9, 13.1
Di-boson (WW, WZ and ZZ)	46.2, 18.0, 5.6

Preselection

- either:
 - ▶ single-electron trigger (e20), $p_{\rm T}^e > 22$ GeV, $p_{\rm T}^\mu > 10$ GeV
 - ► single-muon trigger (mu18), $p_{\rm T}^e > 15 \text{ GeV}, p_{\rm T}^\mu > 20 \text{ GeV}$
- exactly one isolated electron and one isolated muon
- calorimetric and tracking based isolation requirements
- opposite electric charge
- further topological cuts
- example signal in the following: $m_A = 120 \text{ GeV}, \tan \beta = 20$

Selection Variables

- $p_{\rm T}^e + p_{\rm T}^{\mu} + E_{\rm T}^{\rm miss} < 120 \,\,{\rm GeV}$
- mainly against $t\bar{t}$ and dibosons

- $\blacktriangleright \Delta \phi_{e\mu} > 2.0$
- \blacktriangleright mainly against $t\bar{t}$ and dibosons

2.5 3

 $|\Delta \phi_{e_{II}}|$

2

Background composition after topological selection:

	Data	Total MC bkg	W+jets	Di-boson	$t\bar{t}$ +	$Z/\gamma^* \rightarrow$	$Z/\gamma^* \rightarrow$	A/H/h signal
		(w/o QCD)			single-top	$ee, \mu\mu$	$\tau^+\tau^-$	
eμ	2472	2496±27	30±15	109±5	100 ± 2	40 ± 4	2217±22	155±6

Estimation of $Z \rightarrow \tau \tau$ background shape

Embedding

- more details in talk by Thomas Schwindt
- select $Z \rightarrow \mu \mu$ in data
- replace muons by τ's
- simulate τ-decays and detector response to τ decay products
- merge back with remaining data event
- pile-up and UE effects thus mostly estimated from data
- normalization done to $Z \rightarrow \tau \tau$ MC after preselection cuts

 shape of final mass variable (details later)

QCD background estimate

► ABCD method
$$\begin{array}{c} \text{isolated} \\ q_e = -q_\mu \\ q_e = q_\mu \end{array} \begin{array}{c} \text{anti-} \\ \text{isolated} \\ C \\ D \end{array}$$

▶ assume A/B = C/D (uncorrelated variables), shapes taken from region C

•
$$n_A = r_{C/D} \times n_B$$
, $r_{C/D} = 2.00 \pm 0.03(stat.) \pm 0.39(syst.)$

•
$$n_A^{QCD} = 120 \pm 20(stat.) \pm 23(syst.)$$

Systematics

	Di-boson	$t\bar{t}+Single-top$	$Z \to \tau \tau$	Signal	
$\sigma_{inclusive}$	$\pm 7\%$	$\pm 10\%$	$\pm 5\%$	$\pm 14\%$	
e efficiency	$\pm 4\%$	$\pm 3\%$	$\pm 5\%$	$\pm 5\%$	
μ efficiency	$\pm 2\%$	$\pm 2\%$	$\pm 2\%$	$\pm 2\%$	
energy scales					
and resolution	$\pm 2\%$	$\pm 6\%$	$\pm 1\%$	$\pm 1\%$	
Luminosity		$\pm 3.7\%$			
Total	$\pm 10\%$	$\pm 13\%$	$\pm 9\%$	$\pm 16\%$	

Final Discriminating Variable: Effective Mass

Effective mass

- collinear mass not promising for inclusive analysis (back-to-back topology)
- used instead the "effective" mass:

$$m_{\rm eff}^2 = (p_e + p_\mu + p_{E_{\rm T}^{\rm miss}})^2$$

with

$$p_{E_{\mathrm{T}}^{\mathrm{miss}}} = (E_{\mathrm{x}}^{\mathrm{miss}}, E_{\mathrm{y}}^{\mathrm{miss}}, 0, E_{\mathrm{T}}^{\mathrm{miss}})$$

- ► No excess seen ⇒ set limits!
- use mass shape information in limit setting
- \blacktriangleright Profile-Likelihood test statistic, CL_s for hypothesis test

Observed 2472 events, expect 2600 ± 200 from background

Limit on $\sigma \times BR$

- assume 100% ggF or b-associated production and only one narrow resonance
- can be used to test arbitrary models (see talk by O. Brein on HiggsBounds)

Limit on $\sigma \times \underline{BR}$

- assume 100% ggF or b-associated production and only one narrow resonance
- can be used to test arbitrary models (see talk by O. Brein on HiggsBounds)

Limit in $(m_A, \tan\beta)$ plane

- assumes specific MSSM scenario (here: MHMAX)
- fixes relative contributions of ggF and b-associated production

Combination with other Decay CHannels

- $e\mu$ channel contributes most for low masses
- ▶ higher masses dominated by $\ell \tau_{had}$ channel, $\tau_{had} \tau_{had}$ significant for high masses
- Limits with 2010 dataset completely superseeded

Summary

LHC Higgs cross section working group recommendations

- YR1: inclusive cross sections
- YR2: differential distributions coming soon
- being used by ATLAS and CMS common parameters and cross sections for both experiments

Search for neutral MSSM Higgs bosons in the $\tau\tau$ final state

- based on $1.1 \, \text{fb}^{-1}$ (about $4 \times$ more on tape)
- ▶ no excess seen ⇒ placed limits
- large parts of MSSM parameter excluded
- future: more exclusive analyses (b-tagging), better use of mass reconstruction techniques

more results to come soon!