

$Z \rightarrow \tau \tau \rightarrow I \tau_h$ in ATLAS 2011

$\label{eq:Frank Seifert (TU Dresden)} Frank Seifert (TU Dresden) \\ On behalf of the ATLAS Z \ {\scriptstyle \rightarrow } \tau\tau \ analysis working group.$

Introduction

For $Z \rightarrow h_h^{reconstruction}$, all parts of the detector are used:

- Inner detector
- E.m. calorimeter
- Hadronic calorimeter
- Muon spectrometer

 $Z \rightarrow \tau \tau \rightarrow \mu \tau_h + 3\nu$ event candidate in ATLAS from 2010 data taking.

Introduction

- Z $\rightarrow \tau\tau$ cross-section with 36pb⁻¹ 2010 data was published by ATLAS.
- This measurement was statistically limited.

- 1. Main goal for 2011 measurement: Updated measurement with increased Luminosity to get rid of the statistical limitation.
- 2. Use the well known Z peak to study various $\tau\tau\,$ mass reconstruction techniques.
- \rightarrow 1.34fb⁻¹ to 1.55fb⁻¹ of 2011 data for high statistics and still low trigger thresholds for $Z \rightarrow \tau \tau$ studies!

Event Selection

- 2011 data with 1.34fb⁻¹ to 1.55fb⁻¹ is used.
- Usual ATLAS cleaning cuts and "good runs list" is used.

Trigger

	tau-el channel	<u>tau-mu channel + el-mu channel</u>		
Trigger Stream:	JetTauEtmiss stream	Muons stream		
• Lvl. 3 Trigger:	EF_tau16_loose_e15_medium	EF_mu15i, EF_mu15i_medium		

- > Use of "exotic" triggers with the aim:
 - → Have as low as possible p_{τ} threshold of trigger → low offline p_{τ} cut of the objects
 - > To maximise signal efficiency of rel. low mass $Z \rightarrow \tau \tau$ signal, compared to Higgs searches.

Object Selection - Tau

Object Selection - Leptons

<u>Muon</u>

- P_T > 17.0 GeV
- Eta < 2.4
- "Staco Loose" identification
- E_{T} ConeRel30 < 0.04
- P_T ConeRel40 < 0.03

Electron

- P_T > 17.0 GeV
- Eta < 2.47 / [1.37, 1.52]
- Tight identification
- E_TConeRel40 < 0.10
- P_TConeRel40 < 0.06

Isolation cuts to supress Multijet background (more on next slide).

Lepton isolation

7

Further event selection

Requirements considered for the selection:

- Dilepton veto \frown Against Z \rightarrow II background
- Opposite charge of lep and $\tau_{_h}$
- cos[ϕ (lep)- ϕ (E_T^{miss})] + cos[ϕ (τ _h)- ϕ (E_T^{miss})] > -0.15
- Transverse mass $M_{T}(lep, E_{T}^{miss}) < 50 \text{ GeV}$

Against W+jets background

• $\tau_h : N_{prong} = 1 \text{ or } 3, |charge| = 1$ • 35 GeV < $M_{vis}(lep, \tau_h) < 75 \text{ GeV}$

Kinematic distributions and cuts

Dilepton veto cut (muon channel):

Opposite sign cut (muon channel):

in the event.

Product of the reconstructed charge of the tau and the lepton (No multijet estimation applied here).

Kinematic distributions and cuts

Cuts against W \rightarrow Iv + jets background (muon channel):

Transverse Mass

 $cos[\Delta \phi(lep, MET)] + cos[\Delta \phi(tau, MET)]$

W+jets background normalisation

In W+jets and Z+jets MC samples, the tau fake rate is overestimated (Tau Id: BDT medium). This leads to a too high yield of MC events compared to data. Correction factors were obtained from control regions and applied to W+jets and Z+jets MC.

muon-tau channel electron-tau channel Events / 5 GeV au candidates/2.5 GeV Data 201 **450**⊟ Ldt = 1.55 fb⁻¹/vs = 7 TeV 3000 Ztautau 400E Zee 2500 350E osons 300E Wenu 2000 Wtaunu 250E ATLAS work in progress di-bosons 1500 **200**⊨ ATLAS work in progress 150E 1000 100E 500 50 E 0^L 25 20 60 40 80 100 120 140 90 100 p_(τ) Tau p_τ(τ) [GeV] el-tau, OS: $k_{w} = 0.46 \pm 0.02$ mu-tau, OS: $k_w = 0.54 \pm 0.01$ el-tau, SS: $k_w = 0.56 \pm 0.04$ mu-tau, SS: $k_w = 0.74 \pm 0.03$

W+jets control region (inversion of W-cuts from previous slide):

Plots are before applying the k_w factors.

Z+jets background normalisation

Z+jets control region, where a jet fakes the tau is chosen by requiring a second preselected lepton and the invariant mass of both leptons to be: $66GeV < M_{\mu} < 116GeV$.

Z+jets control region:

muon-tau channel

Plots are before applying the k_w factors.

Distributions after correction

W- and Z control regions for muon-tau channel:

QCD Background estimation

- ABCD method with isolation/antiisolation and OS/SS ratio is used.
- OS: the charge-product of tau and lepton is negative (signal signature).
- SS: the charge-product of tau and lepton is positive (background signature).

• R_{os/ss} is independent of the isolation within the statistical uncertainties (muon channel):

Kinematic distributions and cuts

After applying some further tau-cleaning cuts (Charge = 1, NumTrack = 1 \parallel 3), we obtain our final VisMass distributions:

el-had channel

mu-had channel

As can be seen: the electron-tau fake rate is much higher than the muon-tau fake rate!

For the final measurement, the events within the Mass window of 35GeV < Mvis < 75GeV are taken to further reduce $Z \rightarrow \text{ee}$ or $Z \rightarrow \text{mumu}$ background.

Systematic uncertainties

Systematic uncertainty	$\delta\sigma/\sigma$ (%) $\tau_{\mu}\tau_{\rm h}$	$\delta\sigma/\sigma$ (%) $\tau_e\tau_{\rm h}$	$\delta\sigma/\sigma$ (%) $\tau_e\tau_\mu$
lepton SF	1.7	+5.2/-4.7	6.2
muon resolution	< 0.01	-	< 0.01
electron resolution	-	0.1	0.2
jet resolution	-	-	1.7
LAr hole	-	0.02	< 0.01
au id efficiency	+5.4/-4.9	+5.4/-4.9	-
electron-tau jet rate		0.2	-
<i>e</i> , τ , jet and $E_{\rm T}^{\rm miss}$ energy scale	+8.9/-7.2	work in progress	4.1
tau trigger	-	+5.2/-4.1	-
k_W	0.03	0.05	-
k_Z	0.03	0.03	-
QCD estimation	0.74	0.5	0.7
MC cross sections	0.10	0.2	0.2
A_Z uncertainties	Х	Х	Х
Total systematic unc.	+10.6/-8.9	(+9.1/-8.0)	7.7
Statistical uncertainty	2.1	2.7	5.3

ATLAS work in progress

Table 21: Systematic and statistical uncertainties on the total cross section measurement.

) Most dominant systematics contributions.

 \bigcirc Preliminary calculated without Energy scale systematics.

Calculation of the cross-section

The Z \rightarrow $\tau\tau\,$ cross-section is calculated as:

 $\sigma(Z \rightarrow \tau\tau) \times BR = \frac{N_{data} - N_{background}}{A_z \times C_z \times Luminosity}$

Comparison of preliminary obtained results with 2010 measurement and theory prediction $(960\pm50 \text{ pb}^{-1})$:

No systematic uncertainties included here!

Conclusions

- An updated measurement of the Z $\rightarrow \tau\tau$ cross-section is presented with increased statistics compared to the measurement with the 2010 data set in ATLAS.
- The result is in agreement with results obtained in 2010 and with the predictions from theory.
- Interesting: Isolated muon trigger and combined electron-tau trigger were used in this study.
- In addition various different mass reconstruction techniques were studied and compared within this analysis (not discussed further in this presentation).

Backup

- Monte Carlo samples used in this study -

Z + jets

Process	Dataset Number	AMI Tag	tauD3PD Tag	LO Cross Section * NNLO-factor [pb-1]	Events
$Z \rightarrow \tau \tau \ (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np0}$	107670	e844_s933_s946_r2302_r2300	01-01-06	6.6956E-01 * 1.25	6608784
$Z \rightarrow \tau \tau \ (m_{\ell \ell} > 60 \text{ GeV}) + \text{Np1}$	107671	e844_s933_s946_r2302_r2300	01-01-06	1.3465E-01 * 1.25	1327672
$Z \rightarrow \tau \tau \ (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np2}$	107672	e844_s933_s946_r2302_r2300	01-01-06	4.0762E-02 * 1.25	403864
$Z \rightarrow \tau \tau \ (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np3}$	107673	e844_s933_s946_r2302_r2300	01-01-06	1.1274E-02 * 1.25	109947
$Z \rightarrow \tau \tau \ (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np4}$	107674	e844_s933_s946_r2302_r2300	01-01-06	2.8390E-03 * 1.25	29977
$Z \rightarrow \tau \tau \ (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np5}$	107675	e844_s933_s946_r2302_r2300	01-01-06	7.6125E-04 * 1.25	9990
$Z \rightarrow ee (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np0}$	107650	e737_s933_s946_r2302_r2300	01-01-06	6.6967E-01 * 1.25	6612265
$Z \rightarrow ee (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np1}$	107651	e737_s933_s946_r2302_r2300	01-01-06	1.3441E-01 * 1.25	1333745
$Z \rightarrow ee (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np2}$	107652	e737_s933_s946_r2302_r2300	01-01-06	4.0724E-02 * 1.25	404873
$Z \rightarrow ee (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np3}$	107653	e737_s933_s946_r2302_r2300	01-01-06	1.1298E-02 * 1.25	109942
$Z \rightarrow ee (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np4}$	107654	e737_s933_s946_r2302_r2300	01-01-06	2.8570E-03 * 1.25	29992
$Z \rightarrow ee (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np5}$	107655	e737_s933_s946_r2302_r2300	01-01-06	7.5883E-04 * 1.25	8992
$Z \rightarrow \mu \mu \ (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np0}$	107660	e737_s933_s946_r2302_r2300	01-01-06	6.6968E-01 * 1.25	6619010
$Z \rightarrow \mu \mu \ (m_{\ell \ell} > 60 \text{ GeV}) + \text{Np1}$	107661	e737_s933_s946_r2302_r2300	01-01-06	1.3464E-01 * 1.25	1334723
$Z \rightarrow \mu \mu \ (m_{\ell \ell} > 60 \text{ GeV}) + \text{Np2}$	107662	e737_s933_s946_r2302_r2300	01-01-06	4.0749E-02 * 1.25	403886
$Z \rightarrow \mu \mu \ (m_{\ell \ell} > 60 \text{ GeV}) + \text{Np3}$	107663	e737_s933_s946_r2302_r2300	01-01-06	1.1246E-02 * 1.25	109954
$Z \rightarrow \mu \mu \ (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np4}$	107664	e737_s933_s946_r2302_r2300	01-01-06	2.8462E-03 * 1.25	29978
$Z \rightarrow \mu \mu \ (m_{\ell\ell} > 60 \text{ GeV}) + \text{Np5}$	107665	e737_s933_s946_r2302_r2300	01-01-06	7.6319E-04 * 1.25	9993

Table 1: List of Monte Carlo samples for Z+jets production. The samples are generated with AlpGen. The samples are split per number of initial partons (NpX, X=0, ..., 5) and they have been created with a minimum parton p_T cut at 20 GeV.

W + jets

Process	Dataset Number	AMI Tag	tauD3PD Tag	LO Cross Section * NNLO-factor [pb ⁻¹]	Events
$W \rightarrow \tau \nu + Np0$	107700	e844_s933_s946_r2302_r2300	01-01-06	6.9322E+00 * 1.20	3259564
$W \rightarrow \tau \nu + Np1$	107701	e844_s933_s946_r2302_r2300	01-01-06	1.3047E+00 * 1.20	2496467
$W \rightarrow \tau \nu + Np2$	107702	e844_s933_s946_r2302_r2300	01-01-06	3.7780E-01 * 1.20	3764804
$W \rightarrow \tau \nu + Np3$	107703	e844_s933_s946_r2302_r2300	01-01-06	1.0190E-01 * 1.20	1008514
$W \rightarrow \tau \nu + Np4$	107704	e844_s933_s946_r2302_r2300	01-01-06	2.5651E-02 * 1.20	248864
$W \rightarrow \tau \nu + \text{Np5}$	107705	e844_s933_s946_r2302_r2300	01-01-06	6.9938E-03 * 1.20	64950
$W \rightarrow ev + Np0$	107680	e600_s933_s946_r2302_r2300	01-01-06	6.9216E+00 * 1.20	3455037
$W \rightarrow ev + Np1$	107681	e798_s933_s946_r2302_r2300	01-01-06	1.3054E+00 * 1.20	2499513
$W \rightarrow ev + Np2$	107682	e760_s933_s946_r2302_r2300	01-01-06	3.7801E-01 * 1.20	3768265
$W \rightarrow ev + Np3$	107683	e760_s933_s946_r2302_r2300	01-01-06	1.0185E-01 * 1.20	1009641
$W \rightarrow ev + Np4$	107684	e760_s933_s946_r2302_r2300	01-01-06	2.5674E-02 * 1.20	249869
$W \rightarrow ev + Np5$	107685	e760_s933_s946_r2302_r2300	01-01-06	7.0177E-03 * 1.20	69953
$W \rightarrow \mu \nu + Np0$	107690	e600_s933_s946_r2302_r2300	01-01-06	6.9196E+00 * 1.20	3466523
$W \rightarrow \mu \nu + Np1$	107691	e798_s933_s946_r2302_r2300	01-01-06	1.3055E+00 * 1.20	2499513
$W \rightarrow \mu \nu + Np2$	107692	e760_s933_s946_r2302_r2300	01-01-06	3.7806E-01 * 1.20	3768893
$W \rightarrow \mu \nu + Np3$	107693	e760_s933_s946_r2302_r2300	01-01-06	1.0196E-01 * 1.20	1009589
$W \rightarrow \mu \nu + Np4$	107694	e760_s933_s946_r2302_r2300	01-01-06	2.5642E-02 * 1.20	254879
$W \rightarrow \mu \nu + Np5$	107695	e760_s933_s946_r2302_r2300	01-01-06	6.9862E-03 * 1.20	69958

Table 2: List of Monte Carlo samples for W+jets process generated with AlpGen. The samples are split per number of partons produced (NpX, X=0, ..., 5) and they have been created with a minimum parton p_T cut at 20 GeV.

γ^*/Z low mass / ttbar / di-boson

Process	Dataset Number	AMI Tag	tauD3PD Tag	LO Cross Section * NNLO-factor [pb-1]	Ever
$\gamma^*/Z \rightarrow \tau \tau \ (10 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}) + \text{Np0}$	116270	e844_s933_s946_r2302_r2300	01-01-06	3055.1 * 1.25	9598
$\gamma^*/Z \rightarrow \tau \tau$ (10 GeV < $m_{\ell\ell}$ < 60 GeV) + Np1	116271	e844_s933_s946_r2302_r2300	01-01-06	84.93 * 1.25	2969
$\gamma^*/Z \rightarrow \tau \tau (10 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}) + \text{Np2}$	116272	e844_s933_s946_r2302_r2300	01-01-06	41.47 * 1.25	4988
$\gamma^*/Z \rightarrow \tau \tau (10 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}) + \text{Np3}$	116273	e844_s933_s946_r2302_r2300	01-01-06	8.36 * 1.25	1499
$\gamma^*/Z \rightarrow \tau \tau$ (10 GeV < $m_{\ell\ell}$ < 60 GeV) + Np4	116274	e844_s933_s946_r2302_r2300	01-01-06	1.85 * 1.25	399
$\gamma^*/Z \rightarrow \tau \tau$ (10 GeV $< m_{\ell\ell} < 60$ GeV) + Np5	116275	e844_s933_s946_r2302_r2300	01-01-06	0.46 * 1.25	99
$\gamma^*/Z \rightarrow ee (15 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}) + \text{Np0}$	116250	e660_s933_s946_r2302_r2300	01-01-06	3055.2 * 1.25	9998
$\gamma^*/Z \rightarrow ee (15 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}) + \text{Np1}$	116251	e660_s933_s946_r2302_r2300	01-01-06	84.92 * 1.25	2999
$\gamma^*/Z \rightarrow ee (15 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}) + \text{Np2}$	116252	e660_s933_s946_r2302_r2300	01-01-06	41.41 * 1.25	4998
$\gamma^*/Z \rightarrow ee (15 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}) + \text{Np3}$	116253	e660_s933_s946_r2302_r2300	01-01-06	8.38 * 1.25	1499
$\gamma^*/Z \rightarrow ee (15 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}) + \text{Np4}$	116254	e660_s933_s946_r2302_r2300	01-01-06	1.85 * 1.25	399
$\gamma^*/Z \rightarrow ee (15 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}) + \text{Np5}$	116255	e660_s933_s946_r2302_r2300	01-01-06	0.46 * 1.25	99
$\gamma^*/Z \rightarrow \mu\mu$ (15 GeV < $m_{\ell\ell}$ < 60 GeV)+ Np0	116260	e660_s933_s946_r2302_r2300	01-01-06	3054.9 * 1.25	9998
$\gamma^*/Z \rightarrow \mu\mu$ (15 GeV < $m_{\ell\ell}$ < 60 GeV)+ Np1	116261	e660_s933_s946_r2302_r2300	01-01-06	84.87 * 1.25	2998
$\gamma^*/Z \rightarrow \mu\mu$ (15 GeV < $m_{\ell\ell}$ < 60 GeV)+ Np2	116262	e660_s933_s946_r2302_r2300	01-01-06	41.45 * 1.25	4998
$\gamma^*/Z \rightarrow \mu\mu$ (15 GeV < $m_{\ell\ell}$ < 60 GeV)+ Np3	116263	e660_s933_s946_r2302_r2300	01-01-06	8.38 * 1.25	1499
$\gamma^*/Z \rightarrow \mu\mu$ (15 GeV < $m_{\ell\ell}$ < 60 GeV)+ Np4	116264	e660_s933_s946_r2302_r2300	01-01-06	1.85 * 1.25	399
$\gamma^*/Z \rightarrow \mu\mu$ (15 GeV < $m_{\ell\ell}$ < 60 GeV)+ Np5	116265	e660_s933_s946_r2302_r2300	01-01-06	0.46 * 1.25	99

Table 3: List of Monte Carlo samples for Drell Yan process. The samples are generated with AlpGen. The samples are split per number of partons produced (NpX, X=0, ..., 5) and they have been created with a minimum parton p_T cut at 20 GeV.

Process	Dataset Number	AMI Tag	tauD3PD Tag	Cross Section [pb ⁻¹]	Events
tt (no fully hadronic decays)	105200	e844_s933_s946_r2302_r2300	01-01-06	90.15	14845714
WW	105985	e598_s933_s946_r2302_r2300	01-01-06	17.02	2495756
ZZ	105986	e598_s933_s946_r2302_r2300	01-01-06	5.54	249906
WZ	105987	e598_s933_s946_r2302_r2300	01-01-06	1.26	249923

Table 4: List of Monte Carlo samples for *tt* process generated with MC@NLO and for diboson production generated with Herwig.