Measurement of the W→TU cross section with the ATLAS detector

Jana Kraus (University of Bonn) on behalf of the ATLAS W→τυ group

Helmholtz Allianz Meeting • December 7th, 2011

Motivation

- T leptons play important role in Search for New Physics phenomena (light SM Higgs and SUSY) with ATLAS
- ★ Z→TT and W→TU are important backgrounds to new physics searches
- * W→TV cross section measurement completes the measurement of W production at LHC
- important validation of reconstruction and identification techniques for T leptons and the measurement of the missing transverse energy

W→ru decays

* Event topology

Predicted NNLO cross section: $\sigma \times BR = 10.46 \text{ nb}$

- **soft visible** T_h **momentum** spectrum (sum of charged hadrons)
- **missing transverse energy E_T^{miss}** due to 2 neutrinos

Tau reconstruction & identification at ATLAS

- * Only **hadronic τ** leptons studied
- Two reconstruction algorithms for ATLAS
 - **track-seeded** seed is leading good quality track with pT > 6 GeV
 - **calo-seeded** seeded by calorimeter (anti-kt) jet from built topological clusters

all calo-seeded candidates used in this analysis

- * Three T_h identification algorithms provided
 - simple cuts
 - Boosted Decision Tree (BDT)
 - * Likelihood (LLH)

BDT identification used in this analysis

Missing transverse energy

Efficient QCD background rejection by additional cut on
 E_T^{miss} significance

Event preselection

Measurement with 2010 ATLAS data (34 pb⁻¹)

GRL & Trigger:

*

	Data period	Trigger	Efficiency	
GKL	First (12 pb ⁻¹)	loose tau p _T >12GeV, E _T ^{miss} >20 GeV	(81.3±0.8)%	
combined tau & E _T ^{miss} trigger	Second (25 pb ⁻¹)	medium tau p _T >16GeV, E _T ^{miss} >22 GeV	(62.7±0.7)%	

Cleaning cuts:

- At least I vertex with Ntrk > 2
- * Veto of jets with
 - identified as non-collision events or noise
 - * jet with $p_T > 20$ GeV in 1.3 < $|\eta| < 1.7$
 - * jet $p_T > 20$ GeV and min($\Delta \phi$ (jet, E_T^{miss})) < 0.5

Remove events with fake missing ET

Event selection

- ***** Event signature:
 - *** ET**^{miss} > 30 GeV
 - Leading tau candidate
 - passing **BDT** tau ID
 - **20 GeV < p_T < 60 GeV**, not in crack region

* Lepton vetos:

- Veto medium electrons with pT > 15 GeV
- Veto combined muon with pT > 15 GeV
- Additional electron+muon veto from tau ID
- **QCD** background rejection:

* **E**_T^{miss} significance cut
$$S_{E_T^{miss}} = \frac{E_T^{miss}}{0.5\sqrt{\Sigma E_T}} > 6$$

Suppress background from W and Z

Strong rejection of QCD background

Background estimation

EW background is taken from Monte Carlo and scaled to NNLO cross sections.

 NNLO cross sections in agreement with ATLAS measurements.

The shapes of the important quantities are well described in Monte Carlo, verified by comparison to embedded sample.

Background estimation

QCD background estimated from data - two side bin (ABCD) method used

- * Regions are defined by two variables:
 - * Er^{miss} significance

* BDT tau ID

* To reduce EW/signal contamination in control regions BCD, gaps are introduced

$$N_{\rm QCD}^{\rm A} = N^{\rm B} N^{\rm C} / N^{\rm D}$$

Corrected for EW and signal contamination

Background estimation

good agreement data/MC confirms background estimation

Control plots - Ermiss

Control plots - tau

good agreement data/MC

Control plots - event topology

Cross section measurement

Total cross section

$$\sigma_{W\to\tau_{\rm h}\nu_{\tau}}^{\rm tot} = \sigma_{W\to\tau_{\rm h}\nu_{\tau}}^{\rm fid} / A_W = \frac{N_{\rm obs} - N_{\rm bkg}}{A_W C_W \mathcal{L}}$$

Nbkg

EW background from MC QCD background from ABCD method

Cw

Combined efficiency of selection (trigger, reconstruction and all cuts) from signal MC

 $C_W = \frac{N_{\rm reco, all cuts}}{N_{\rm gen, kin/geom}}$

 $A_{W} = 0.0975 \pm 0.0004$ (MC stat) $C_{W} = 0.0799 \pm 0.0011$ (MC stat)

* alternative methods (with cut-based tau ID, I vertex) yield consistent results for cross section

Aw

Geometric and kinematic acceptance (evaluated on generator level)

$$A_W = \frac{N_{\text{gen, kin/geom}}}{N_{\text{gen, all}}}$$

$$\begin{array}{l} 20 \ \text{GeV} < p_{\text{T}}^{\tau,\text{vis}} < 60 \ \text{GeV} \\ |\eta^{\tau,\text{vis}}| < 2.5, \ \text{excluding} \ 1.3 < |\eta^{\tau,\text{vis}}| < 1.7 \\ (\sum p^{\nu})_T > 30 \ \text{GeV} \\ |\Delta\phi(p^{\tau,\text{vis}}, \sum p^{\nu})| > 0.5 \end{array}$$

Systematic uncertainties

 $\sigma_{W \to \tau_{\rm h} \nu_{\tau}}^{\rm tot}$

		1			
	$\frac{\delta C_W}{C_W}$		$\frac{\delta N_{\rm EW}}{N_{\rm EW}}$	$\frac{\delta N_{\rm QCD}}{N_{\rm QCD}}$	$\frac{\delta \sigma^{\rm fid}_{W \to \tau_{\rm h} \nu_{\tau}}}{\sigma^{\rm fid}_{W \to \tau_{\rm h} \nu_{\tau}}}$
Trigger efficiency	6.1%		6.1%	-	7.0%
Energy scale	6.7%		8.7%	-	8.0%
$\tau_{\rm h}$ ID efficiency	9.6%		4.1%	-	10.3%
Jet $\tau_{\rm h}$ misidentification	-		7.2%	-	1.1%
Electron $\tau_{\rm h}$ misidentification	-		4.5%	-	0.7%
Pile-up reweighting	1.4%		1.2%	-	1.6%
Electron reconstruction/identification	-		1.2%	-	0.2%
Muon reconstruction	-		0.3%	-	0.04%
Underlying event modeling	1.3%		1.1%	-	1.5%
Cross section	-		4.5%	-	0.7%
QCD estimation: Stability/correlation	-		-	2.7%	0.2%
QCD estimation: Sig./EW contamination	-		-	2.1%	0.1%
Monte Carlo statistics	1.4%		2.4%	6.0%	1.5%
Total systematic uncertainty	13.4%		15.2%	6.9%	15.1%
	-				

Main contributions:

- uncertainty on energy scale
- hadronic tau identification efficiency

 $= \sigma_{W \to \tau_{\rm h} \nu_{\tau}}^{\rm fid} / A_W = \frac{N_{\rm obs} - N_{\rm bkg}}{A_W C_W \mathcal{L}}$

A_W systematic uncertainty (mainly PDF uncertainty): **1.9%**

Results

* Consistent with **theoretical expectation** and $W \rightarrow ev /W \rightarrow \mu v$ ATLAS measurement

Summary

Paper accepted by PLB: *arXiv*:1108.4101v1

- ***** $\mathbf{W} \rightarrow \mathbf{T} \mathbf{U}$ important measurement at ATLAS
- * Cross section has successfully been extracted
- **Background estimation** taken from data/validated with data

$$\sigma_{W \to \tau \nu_{\tau}}^{\text{tot}} = 11.1 \pm 0.3 \text{ (stat)} \pm 1.7 \text{ (syst)} \pm 0.4 \text{ (lumi) nb}$$

- * Result consistent with **theoretical** expectation and $W \rightarrow ev /W \rightarrow \mu v$ measurement
- ***** First measurement of $W \rightarrow \tau v$ cross section at the LHC.

Backup

Systematic uncertainties

Monte Carlo predictions

Affecting N_{bgk} and C_w

Trigger efficiency: The response of the T_h and E_T^{miss} trigger part are compared in data and MC - 6.1%

* Energy scale uncertainty: all clusters in event are rescaled according to their uncertainty and ΣE_T and E_T^{miss} are recalculated, at the same time T_h energy scaled is according to its uncertainty - 6.7% for C_W , 8.7% for N_{bkg}

* Th identification efficiency: Uncertainty evaluated for Monte Carlo - varies with underlying event models, detector geometry, hadronic shower model, calorimeter noise cluster thresholds (provided by tau WG) - 9.6 % for C_W, 4.1 % for N_{bkg}

* Electron/jet misidentification: The misidentification probability of jets/electrons as T_h candidates is determined in data and Monte Carlo in a $W \rightarrow I \upsilon + j ets/Z \rightarrow ee$ sample - 7.5% / 4.2% for N_{bkg}

Systematic uncertainties

QCD background estimation Affecting Nbgk

- stability/small correlation of variables: studied by varying the S_{ETmiss} threshold - 2.7%
- * contamination of signal+EW background: studied by varying them in control regions within statistical and systematic uncertainty - 2.1%

Acceptance Aw

- Uncertainty of PDF: reweight default MRSTLO* to different error eigenvectors available for CTEQ6.6, reweight default to PDF sets of CTEQ 6.6 and HERAPDF 1.0 1.9%
- Uncertainty on modelling of parton shower: comparison of acceptance with MC@NLO (after correction for missing tau polarization) negligible

Tau ID variables

	R EM	R track	<i>f</i> track	fcore	fем	mclusters	m _{tracks}	S ^{flight} _T	<i>f</i> нт
Cuts	•	•	•						
Likelihood single-prong	•	•				•			
Likelihood multi-prong	•		•		•		•	•	
Jet BDT single-prong	•	•	•	•	•	•			
Jet BDT multi-prong	•	•	•	•	•	•	•	•	
Electron BDT single-prong	•	•	•	•	•	•			•
Electron BDT multi-prong	•	•	•	•	•	•	•	•	•

$$\begin{split} R_{\rm EM} &= \frac{\sum_{i \in \{\rm EM \ 0-2\}}^{\Delta R_i < 0.4} E_{{\rm T},i}^{\rm EM} \Delta R_i}{\sum_{i \in \{\rm EM \ 0-2\}}^{\Delta R_i < 0.4} E_{{\rm T},i}^{\rm EM}}, \qquad \qquad f_{\rm track} &= \frac{p_{{\rm T}}^{\rm track}}{p_{{\rm T}}^{\tau}}, \\ R_{\rm track} &= \frac{\sum_{i}^{\Delta R_i < 0.4} p_{{\rm T},i} \Delta R_i}{\sum_{i}^{\Delta R_i < 0.4} p_{{\rm T},i}}, \qquad \qquad f_{\rm core} &= \frac{\sum_{i \in \{\rm all\}}^{\Delta R_i < 0.1} E_{{\rm T},i}^{\rm EM}}{\sum_{i \in \{\rm all\}}^{\Delta R_i < 0.4} E_{{\rm T},i}^{\rm EM}}, \\ f_{\rm EM} &= \frac{\sum_{i \in \{\rm EM \ 0-2\}}^{\Delta R_i < 0.4} E_{{\rm T},i}^{\rm EM}}{\sum_{j \in \{\rm all\}}^{\Delta R_j < 0.4} E_{{\rm T},j}^{\rm EM}}, \qquad \qquad S_{{\rm T}}^{\rm flight} &= \frac{L_{{\rm T}}^{\rm flight}}{\delta L_{{\rm T}}^{\rm flight}}, \end{split}$$

MC samples

MC DS ID	Sample	Generator	UE	PileUp Simulation tag		Events	x-sec (nb)
106043	$W \rightarrow e v_e$	Pythia6	AMBT1	InTime < 2 >	e574_s933_s946_r1661_r1700	1.4M	10.46
106044	$W \rightarrow \mu \nu_{\mu}$	Pythia6	AMBT1	InTime < 2 >	e574_s933_s946_r1659_r1700	1.4M	10.46
107054	$W \to \tau v_{ au}$	Pythia6	AMBT1	InTime < 2 >	e574_s934_s946_r1660_r2040	1 M	10.46
106046	$Z \rightarrow ee$	Pythia6	AMBT1	InTime < 2 >	e574_s933_s946_r1661_r1700	1 M	0.99
106047	$Z \rightarrow \mu \mu$	Pythia6	AMBT1	InTime < 2 >	e574_s933_s946_r1659_r1700	1 M	0.99
106052	Z ightarrow au au	Pythia6	AMBT1	InTime < 2 >	e574_s934_s946_r1660_r2040	1 M	0.99
105200	tī leptonic	MC@NLO	AMBT1	InTime < 2 >	e598_s933_s946_r1659_r1700	200k	0.144×0.556
105204	$t\bar{t}$ hadronic	MC@NLO	AMBT1	InTime < 2 >	e598_s933_s946_r1659_r1700	30k	0.144×0.444
107419	$W ightarrow au u_{ au}$	Pythia6	Perugia2010	InTime < 2 >	e618_s934_s946_r1660_r2040	500k	10.46
107418	Z ightarrow au au	Pythia6	Perugia2010	InTime $< 2 >$	e618_s934_s946_r1660_r2040	500k	0.99