

DC-DC and serial powering tests in ATLAS

Laura Gonella - Uni Bonn on behalf of the ATLAS power working group

Laura Gonella - University of Bonn - 08/12/2011

- Introduction
- SP and DC-DC conversion powering schemes for the pixels
 - Serial powering: Shunt-LDO and SP stave prototype
 - DC-DC: x2 charge pump DC-DC converter
- Summary of strips R&D activities on powering
- Conclusion

- Powering scheme of the ATLAS tracker (strips + pixels): direct powering
 - Low efficiency (20 50%), very massive
- Not feasible for high luminosity upgrades: higher detector granularity & smaller feature size FE technology → higher current → higher power losses on cables + prohibitive amount of cables

- For the upgrades of the ATLAS tracker for HL-LHC, two powering scheme are investigated
 - Serial powering (SP)
 - DC-DC conversion
- Aim: reduce the amount of transmitted current wrt direct powering
 - The voltage drop on cables (RI) decreases \rightarrow higher power efficiency
 - The cable cross section decreases \rightarrow lower material budget

Serial powering

Number of modules = n

RΙ

nV

 wrt direct powering the current scales of a factor n: nI → I

1

n -1

n

DC-DC conversion

- Conversion factor = m
- wrt direct powering the current scales of a factor m: nl → nl/m

SP = DC-DC in terms of power efficiency and material reduction if n = m

Discrete regulators/converter are not an option for pixels cause they would introduce too much material → all regulators/converters on-chip

Serial power

- Chain of 8-10 modules powered in series,
 i.e. current flows from module to module
- On module the current splits in parallel between the FE chips
- On-chip voltage generation
 - 2 shunt-LDO regulators/FE
- Note: 8 Shunt-LDO regulators on module are operated in parallel

DC-DC conversion

- Direct power with on-chip DC-DC converter
- Switched capacitor DC-DC converter

out

out in

in

DC-DC S-LDO S-LDO

DC-DC S-LDO S-LDO

1.5V h

in

1.2V n

FE-I4

out

lin

out in

out

DC-DC S-LDO S-LDO

DC-DC S-LDO S-LDO

1.5V 🖞 1.2V 🕇

FE-I4

in

gnd

- FE-I4A is the prototype of the next generation pixel FE chip for upgrades
- FE-I4A can be powered using different options, none of which is hard wired inside the chip
 - Direct
 - Shunt-LDO regulators, in shunt or linear mode
 - X2 charge pump DC-DC converter

- FE-I4A power consumption
 - VDDA = 1.5V, la = 0.300 0.380A
 - VDDD = 1.2V, Id = 0.100 0.180A

- R&D on serial powering in Bonn started almost 10 years ago
- Early activities resulted in the "Serial powering Proof of Principle"
 - Half a stave of the current ATLAS pixel detector was powered in series
 - No performance degradation wrt direct powering
 - No noise pick up through the power lines
- Following these results decision was taken to propose serial powering for the upgrades of ATLAS pixel detector
- Work started on a new regulator concept: the Shunt-LDO
 - Two prototypes demonstrated the working principle and showed good results
 - Integrated 2 shunt-LDO regulators in FE-I4A
 - Characterization of the regulator in FE-I4A
 - Characterization of modules powered with the Shunt-LDO
 - Serial powering stave prototype with FE-I4A

- \rightarrow done
- \rightarrow ongoing
- \rightarrow starting, next

- 2 regulation loops
 - V regulation loop (LDO): provide a constant V_{out}
 - I regulation loop (shunt): when enabled can
 - Set a minimum current limit under which the current through the regulator cannot go (1)
 - Keep the current though the regulator constant independently of the load ⁽²⁾
- Multiple configurable working modes for use in
 - LDO mode & partial shunt mode \rightarrow powering schemes requiring linear regulation
 - Shunt mode \rightarrow serially powered systems requiring shunt regulation

		Partial shunt	LDO	Shunt
V regulation loop		✓	✓	✓
l regulation loop	ON	✓ (1)	10.0	✓ (2)
	OFF	00000	✓	20
	V	100 V	~	· .
Input	0000		1	~

- Dedicated serial powering working mode of the regulator
- In this mode the current through the regulator is kept constant independently of variation of the load current
 - Fraction of M1 current is mirrored (M2, A2, M3) and drained in M5 → I_{in}
 - Reference current defined by resistor
 R3 & drained into M6 → I_{ref}
 - I_{in}` and I_{ref} compared in A3 → M4 shunts the current (I_{shunt}) not drawn by the load

lin M1 Vref M2 R3 [Vout Vin ᠬ M3 R1 Ishunt I_{ref} R2∏ M4 . A3 I_{load} lout

Benefits wrt standard shunt regulators:

- Shunt-LDO regulators generating different output voltages can be placed in parallel without any problem regarding mismatch & shunt current distribution
- Capability of shunting extra current if one of the parallely placed regulators fails (I_{shunt} increases)

Shunt-LDO regulator in FE-I4A

- REG_IN = 0.5 0.6A / 1.4 2.5V
- **REG_OUT = 2** · Vref = 1.2 1.5V
 - V_{ref} has to be provided externally
- Shunt circuitry
 - Enable: Bias V = VDDShunt = REG_IN
 - Reference resistor to set I_{shunt}
 - Internal resistor = Rint = 2KΩ
 - External resistor = Rext
- Working mode selectable via wire bonds
 - Shown here: shunt mode

Shunt mode configuration via wire bonds, using Rint (a), or Rext (b)

- To power the FE-I4, the two shunt-LDO regulators on chip are connected in parallel, i.e. same input and ground connection
- The output of the regulators are connected to VDDA and VDDD

Shunt-LDO regulators configuration on board (only input, output and ground connection shown here)

Shunt-LDO characterization

- Voltage generation
 - For $I_{in} > 0.470A$ the outputs are regulated
 - The decrease of VDDA/D with I_{in} is due to the decrease of the effective V_{ref} seen by the chip
 - 0.150 0.470A: non stable operation, the regulator oscillates
- Current distribution
 - Improved shunt operation: 2 Shunt-LDO regulators can be operated in parallel with different shunt current
- Load regulation = $\Delta V_{out} / \Delta I_{load} = 150 \text{m}\Omega$
 - Simulations: $<30m\Omega$
- For regulation
 - Min $I_{shunt} = 5mA$
 - Min $V_{drop} = 100 \text{mV}$

FE-I4: threshold and noise

- Threshold map
 - Target threshold: 3000e-

- Noise
 - Noise increases but values are still within the noise dispersion

SP for pixels: next steps

Outer layer stave prototype with embedded cable

- Starting to prototype a pixel outer layer stave with serial powering
- Available mechanical structure with integrated SP cable
 - Multilayer Cu cable for signals and HV compatible with all powering scheme (LBNL)
 - Al layer for LV designed for SP (Bonn)
- SP chain = 8 modules
 - Defined by cable and stave layout of this prototype version
- 2-chip FE-I4A modules
- Possibly include current source and protection chip from the strips
- Readout: USBPix test setup for 2-chip modules

DC-DC configuration in FE-I4

R&D on on-chip DC-DC converters is done at LBNL.

- CLOLK is provided from outside the chip. This clock also serves as auxiliary clock for the chip
- Ceramic capacitors used for the test. Cpump is mounted on the board as close to the chip as possible
- DCDC_OUT and ShuLDO1_IN are connected in the chip and share the same pad
- As a "devide-by-two" converter, ideally: lout=2lin & Vout=Vin/2

- Non-overpapping Clock generator:
 - generates 3 internal clock signals from CLK_IN
 - the same frequency but different phase
- Charge pump:
 - consists of 4 transistors working as switches
 - manipulates the pump capacitor under control of clock signals

• 5ns gap between CLK_BOT1 and CLK_BOT2 to eliminate adverse discharging.

Efficiency vs Clock frequency

- Simulation result shows Vefficiency around 90%, while the test result shows Vefficiency of about 84% (Schematic simulation).
 - Post-layout simulation probably will give us different numbers.
- 1MHz is the optimal frequency for this tested chip.

Rout on irradiated chips

- 3 chips irridiated in Los Alamos last Dec. with different dose.
- The DC-DC seem immune to irradiation.
- 3.3V thick oxide transistors were used in the DC-DC design, while in commercial chips this kind of transistors are normally used in I/O circuit. This is the first measurement showing their radiation-hardness property.

- Noise increased as long as DC-DC running even without using it to power the chip
 - Noise depends on DC-DC current

- Problem investigated changing the DC-DC external configuration
- The noise increased only slightly
- Noise does not seem to be intrinsic in the design \rightarrow more investigations needed

- The simple converter in FE-I4A is a good proof of principle
- For a real application follow R&D being done for industry using interleaved phase designs with on-chip capacitors (no external components). This will likely be investigated in 65nm pixel chip prototypes, and possibly also in the 130nm ABC strip readout chip

- Flying cap: MOS, 32-way interleaved
- Supports 0.6V ~ 1.2V from 2V input

Multi-Phase Interleaving

See: H.-P. Le, et al. "Design Techniques for Fully Integrated Switched-Capacitor DC-DC Converters," IEEE Journal of Solid-State Circuits, Sept. 2011.

All material shown on strips is taken from "ATLAS Strip Tracker Stavelets", P. Phillips, TWEPP, Vienna, September 26-30 2011

- Stavelets are being prototyped and tested with both serial powering and DC-DC conversion with up to 4 modules
- Module
 - One Sensor
 - Two Kapton Hybrids
 - Each Hybrid has 20 ABCN-25 ASICs
 - 250nm prototype of strips FE chip, ABCN-130 (130nm)
- Main difference wrt pixels is that regulators/converters can be external

module

Strips R&D on powering (2)

- Serial powering
 - Integrated and external shunt circuitry
 - Custom Current Source
 - Power protection board
- DC-DC conversion
 - Buck converter developed by the microelectronics CERN group
 - Peak power requirement of one 20 chip ABCN-25 hybrid exceeds capability of AMIS series rated for 130nm designs
 - Dedicated DC-DC module provided by the CERN group based on commercial chip

Custom Current Source

DC-DC converter board

Strips R&D on powering (3)

 SP stavelet fitted with 4 single sided short strip silicon detector modules

- System functionality successfully demonstrated: bypass system, custom current source
- Initial ENC results close to expectation
- Detailed investigation of susceptibility to noise signals correlated with readout activity (DTN)
- Next: Submission of a Serial Power & Protection (SPP) Chip, work continues to determine the best balance of performance

DC-DC stavelet fitted with 2 single sided short strip silicon detector modules

- Different hookup configurations tried to achieve reasonable performance
- Different shielding thicknesses investigated
- Next: add more modules

- Similar ENC values for both schemes
- Slightly better DTN performance for DC-DC, but both acceptable

To date, either technology would be a viable powering solution for the ATLAS short strip tracker

Conclusion

- R&D activities on powering schemes including serial power and DC-DC conversion are well advanced for both pixels and strips in view of upgrades for high luminosity in ATLAS
- Serial powering
 - Regulators prototyped
 - Concept extensively proved at system level from both pixels and strips
- DC-DC conversion
 - Converter working principle demonstrated for both external buck converter (CERN group) and integrated switch capacitor DC-DC converter (LBNL)
 - System test started with external DC-DC buck converter (strips)
- Pixels future plans:
 - Serial power is the only realistic option with FE-I4 → likely to be chosen option for a staged installation in 2018
 - On chip DC-DC conversion expected to be a strong competitor in next generation of FE chip (65nm) → later upgrades (>2020)
 - Plan: prototype with SP with FE-I4 based modules and if next generation FE with DC-DC converter is developed in time for 2018 decide at that point

