

Measurement of the Charge Asymmetry in Top Quark Pair Production at CMS

Christian Böser on behalf of the CMS Collaboration | 08th December 2011

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP)

Helmholtz Alliance

PHYSICS AT THE TERASCALE 5th Annual Workshop

Charge asymmetry in the SM (I)

- Most dominant production mode $gg \rightarrow t\bar{t}$ is charge-symmetric
- In $t\bar{t}$ production via asymmetric initial states (eg. $q\bar{q} \to t\bar{t}$) the (anti-)top quarks are preferably produced in the direction of the incoming (anti-)quark
- Asymmetry due to interference of ISR and FSR and between box diagram and born diagram (NLO effect)

 \Rightarrow excess of t vs. \bar{t} in certain kinematic region, and vice versa

Charge asymmetry in the SM (II)

@ Tevatron:

@ LHC:

Forward-backward asymmetry:

Sensitive variable:

$$\Delta y = y_t - y_{\overline{t}}$$

Central-peripheral asymmetry:

Sensitive variables:

$$\Delta |\eta| = |\eta_t| - |\eta_{\overline{t}}|$$

$$\Delta y^2 = (y_t - y_{\overline{t}})(y_t + y_{\overline{t}})$$

In all variables:

$$A_C = \frac{N^+ - N^-}{N^+ + N^-}$$

Recent results

@ Tevatron:

SM prediction: $A_C^{SM,\Delta y} \approx 6\%$ [Kühn, Rodrigo]

- $A_C^{\Delta y} = 0.201 \pm 0.067 \text{ (CDF, } 5.0 \text{ fb}^{-1}\text{)}$
- $A_C^{\Delta y} = 0.196 \pm 0.065 \, (DØ, 5.4 \, \text{fb}^{-1})$
 - $\approx 2\sigma$ deviation
 - CDF: $m_{\bar{t}}$ > 450 GeV even 3.4 σ deviation!
 - Hint for new physics?
- @ LHC:

SM prediction:
$$A_C^{SM,\Delta|\eta|}=1.3\%, \quad A_C^{SM,\Delta y^2}=1.1\%$$
 [Kühn, Rodrigo]

- $A_c^{\Delta|\eta|} = 0.060 \pm 0.14 \text{ (CMS TOP-10-010, 36 pb}^{-1})$
 - dominated by large stat. uncertainty
 - in this analysis 30 times more data

CMS-TOP-11-014: Event selection

- Select events in muon+jets and electron+jets channel:
 - One isolated charged lepton (e,μ)
 - Second charged lepton veto
 - At least four jets
 - At least one of them b tagged
- Used data: 1.09 fb⁻¹

Background estimation

- Use discrimination power of MET and M3
- MC templates for all processes, exception: data-driven template for QCD
- Fit separately e+jets and mu+jets, subdivide each sample into MET < 40 GeV (A) and MET > 40 GeV (B)
- Fit simultaneous MET in (A) and M3 in (B)

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	process	electron+jets	muon+jets	total
	t t	4401 ± 165	5835 ± 199	10236 ± 258
	single top (t + tW)	213 ± 58	293 ± 81	507 ± 99
	W ⁺ +jets	313 ± 84	404 ± 106	718 ± 135
QCD 355 ± 71 232 ± 79 587 ± 106 total fit result 5663 ± 226 7094 ± 276 12757 ± 357	W [−] +jets	299 ± 90	245 ± 109	544 ± 141
total fit result 5663 \pm 226 7094 \pm 276 12757 \pm 357	Z+jets	81 ± 24	85 ± 26	165 ± 35
	QCD	355 ± 71	232 ± 79	587 ± 106
observed data 5665 7092 12757	total fit result	5663 ± 226	7094 ± 276	12757 ± 357
	observed data	5665	7092	12757

Reconstruction

- Reconstruction of the four-vectors of the top guarks:
 - Reconstruct neutrino from W mass constraint (one or two solutions)
 - Assignment of selected jets to the final state quark, take all possible combinations into account
 - Best possible hypothesis from ΔR matching with MC information
- Selection of one hypothesis:
 - Use decorrelated masses and calculate Likelihood ratio for each mass:

$$egin{pmatrix} \binom{m_{l_{|ep}}}{m_{l_{had}}} \Rightarrow \binom{m_1}{m_2}, & \mathcal{L} = rac{ ext{good hypotheses}}{ ext{all hypotheses}} \end{cases}$$

- Use b tagger output to give probability $P_b(x)$ of jet x to be a b jet
- Choose the hypothesis with largest value for:

Reconstructed Distributions

- Reconstruct distribution of the sensitive variables $\Delta |\eta|$ and Δy^2
- Combine e+jets and mu+jets channel

Uncorrected Asymmetry in combined channel

- $A_C^{RAW,\Delta|\eta|} = -0.004 \pm 0.009$ (stat.)
- $A_C^{RAW,\Delta y^2} = -0.004 \pm 0.009$ (stat.)

Unfolding

- Reconstructed distribution corrected for
 - Background processes
 - ⇒ Subtraction of MC background templates normalized to prediction
 - Influences of selection efficiency and migration effects
 - ⇒ Regularized unfolding with the ROOT TUnfold package

Next step: Scrutinizing the unfolding!

Consistency checks

- 50,000 pseudo experiments, for each:
 - Draw signal and background events from MC-Samples according to fit
 - Subtract background and unfold the pseudo sample
 - Check relative difference of each bin with true bin content
 - Check pull distribution for each bin
 - ⇒ Very good agreement
- Linearity checks with reweighted samples
 - ightharpoonup \Rightarrow Small correction factor for $A_C^{\Delta y^2}$

Results

• Unfolded distributions for $\Delta |\eta|$ and Δy^2 :

Unfolded asymmetries

- $ullet A_C^{\Delta |\eta|} = -0.016 \pm 0.030 ({
 m stat.})$
- $A_C^{\Delta y^2} = -0.013 \pm 0.026 (\text{stat.})$
- Reminder: $A_C^{SM,\Delta|\eta|} = +0.013$, $A_C^{SM,\Delta y^2} = +0.011$

Systematics

- Produce pseudo experiments from systematically shifted distributions
- Unfold with standard templates
- Measure value of unfolded asymmetry

	$A_C^{\Delta \eta }$		$A_C^{\Delta y^2}$	
Source of Systematic:	Variation	+ Variation	Variation	+ Variation
JES	-0.003	0.000	-0.007	0.000
JER	-0.002	0.000	-0.001	0.001
Q ² scale	-0.014	0.000	-0.013	+0.003
ISR/FSR	-0.006	+0.003	0.000	+0.024
Matching threshold	-0.006	0.000	-0.013	+0.006
PDF	-0.001	+0.001	-0.001	+0.001
b tagging	-0.001	+0.003	0.000	0.001
Lepton ID/sel. efficiency	-0.002	+0.004	-0.002	0.003
QCD model	-0.008	+0.008	-0.006	+0.006
Pileup	-0.002	+0.002	0.000	0.000
Overall	-0.019	+0.010	-0.021	+0.026

Systematic uncertainties are of the same order as the statistical uncertainties

Conclusion & Outlook

Results

$$m{A}_{C}^{\Delta|\eta|} = -0.016 \pm 0.030 ({
m stat.})^{+0.010}_{-0.019} ({
m syst.})$$

$$A_C^{\Delta y^2} = -0.013 \pm 0.026 (\text{stat.})_{-0.021}^{+0.026} (\text{syst.})$$

- Results are in good agreement with the Standard Model
- Background-subtracted asymmetries show no mass dependence:

- Outlook:
 - Perform 2D unfolding to get unfolded asymmetries as function of unfolded M_{tt}
 - Good progress, expect results until the end of this year