

Determination of γ with $B_s \rightarrow D_s K$

5th Annual Workshop of the Helmholtz Alliance "Physics at the Terascale"

Maximilian Schlupp

Unitary CKM matrix

$$V_{\rm CKM} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- can be described by three mixing angles and one (CP-violating) phase
- Wolfenstein parametrization

$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

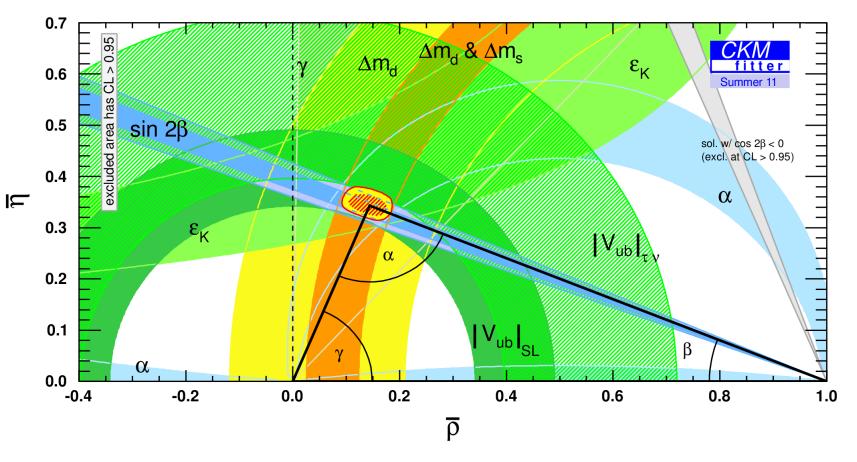
Bonn, 12/08/11

Unitarity of the 3x3 CKM matrix implies e.g.

$$\sum_{i} V_{ij} V_{ik}^* = \delta_{jk}$$

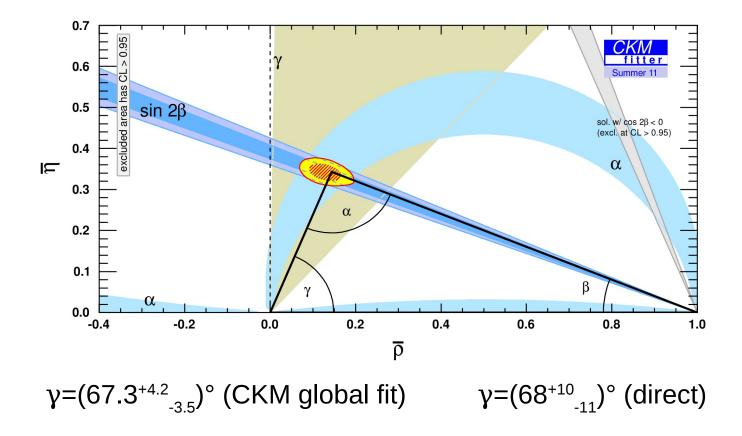
This translates into several unitarity conditions; most commonly used

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

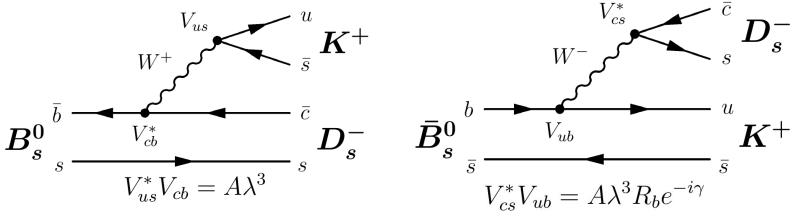

Normalized to the best-known element

$$V_{cd}V_{cb}^*$$

Bonn, 12/08/11



Bonn, 12/08/11



Extracting γ from $\mathsf{B}_{_{\!\mathsf{S}}}$ decays

• In order to measure γ one needs decays containing V

$$\gamma = \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

• One possibility $B_s \rightarrow D_s K$

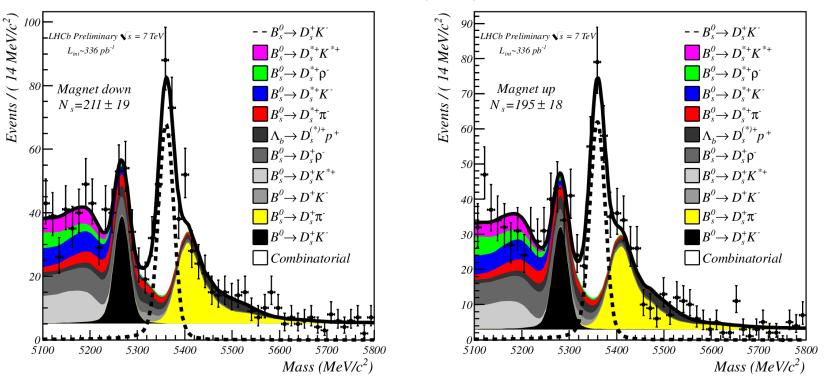
Extracting γ from $\mathsf{B}_{_{\!\mathsf{S}}}$ decays

R. Fleischer; CERN-TH/2003-084, hep-ph/0304027 S. Cohen, M. Merk, E. Rodrigues; LHCb Note 2007-041

$$\begin{array}{ll} & \text{Why } \mathsf{B}_{s} \to \mathsf{D}_{s}\mathsf{K} \ ? \\ & \text{Theoretically clean} & |B_{H,L}\rangle = p|B_{s}^{0}\rangle \mp q|\bar{B}_{s}^{0}\rangle \\ & \lambda_{D_{s}^{-}K^{+}} = \left(\frac{q}{p}\right) \frac{\bar{A}_{D_{s}^{-}K^{+}}}{A_{D_{s}^{-}K^{+}}} = \left(\frac{V_{tb}^{*}V_{ts}}{V_{tb}V_{ts}^{*}}\right) \left(\frac{V_{ub}V_{cs}^{*}}{V_{cb}V_{us}}\right) \left|\frac{A_{2}}{A_{1}}\right| e^{i\Delta_{T1/T2}} = |\lambda_{D_{s}^{-}K^{+}}| e^{i(\Delta_{T1/T2} - (\gamma + \phi_{s}))} \\ & \bar{\lambda}_{D_{s}^{+}K^{-}} = \left(\frac{p}{q}\right) \frac{A_{D_{s}^{+}K^{-}}}{\bar{A}_{D_{s}^{+}K^{-}}} = \left(\frac{V_{tb}V_{ts}^{*}}{V_{tb}^{*}V_{ts}}\right) \left(\frac{V_{ub}^{*}V_{cs}}{V_{cb}V_{us}^{*}}\right) \left|\frac{A_{2}}{A_{1}}\right| e^{i\Delta_{T1/T2}} = |\lambda_{D_{s}^{-}K^{+}}| e^{i(\Delta_{T1/T2} + (\gamma + \phi_{s}))} \\ & \longrightarrow \gamma + \phi_{s} = \frac{1}{2} \left[arg(\bar{\lambda}_{\bar{f}}) - arg(\lambda_{f})\right] \end{array}$$

- Tree-level diagrams
- Very important SM benchmark measurement (LHCb exclusive)

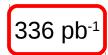
Bonn, 12/08/11



-HCb-CONF-2011-057

On the way to the first direct measurement of γ in $\mathrm{B_s}{\rightarrow}\ \mathrm{D_s}\mathrm{K}$

- First observation of $B_{s} \rightarrow D_{s}K$ in 2008 (CDF)
- Establish the signal at LHCb
- Measure the branching ratio of $B_s \rightarrow D_s K$



Branching Ratio measurement of $B_s \rightarrow D_s K$

Get yields of the different floating components from the mass-fit

Parameter	Fit value		
	Magn. Down	Magn. Up	
Num. $B^0 \to D_s^- K^+$	105 ± 18	91 ± 17	
Num. $B_s^0 \to D_s^- \pi^+$ and $B^0 \to D^- \pi^+$	161 ± 22	158 ± 21	
Num. $B_s^0 \to D_s^{\mp} K^{\pm}$	211 ± 19	195 ± 18	
$B_s^0 \to D_s^{\mp} K^{\pm}$ mass mean (MeV/c ²)	5360.8 ± 1.8	5359.7 ± 1.8	

Bonn, 12/08/11

Branching Ratio measurement of $B_s \rightarrow D_s K$

Calculate the Branching Ratio

$$\begin{aligned} \frac{\mathcal{B}\left(B_{s}^{0} \to D_{s}^{\mp}K^{\pm}\right)}{\mathcal{B}\left(B_{s}^{0} \to D_{s}^{-}\pi^{+}\right)} &= \frac{N_{B_{s}^{0} \to D_{s}^{\mp}K^{\pm}}}{N_{B_{s}^{0} \to D_{s}^{-}\pi^{+}}} \frac{\epsilon_{B_{s}^{0} \to D_{s}^{-}\pi^{+}}^{\text{PID}}}{\epsilon_{B_{s}^{0} \to D_{s}^{-}K^{\pm}}^{\text{PID}}} \frac{\epsilon_{B_{s}^{0} \to D_{s}^{-}\pi^{+}}^{\text{Sel}}}{\epsilon_{B_{s}^{0} \to D_{s}^{-}K^{\pm}}^{\text{Sel}}} \\ \frac{\mathcal{B}\left(B_{s}^{0} \to D_{s}^{\mp}K^{\pm}\right)}{\mathcal{B}\left(B_{s}^{0} \to D_{s}^{-}\pi^{+}\right)} &= 0.0647 \pm 0.0044 \text{ (stat.)} + 0.0039 \text{ (syst.)} \\ \text{World's most precise} \end{aligned}$$

CDF result:
$$0.097 \pm 0.018({
m stat}) \pm 0.009({
m sys})$$

Bonn, 12/08/11

Branching Ratio measurement of $B_s \rightarrow D_s K$

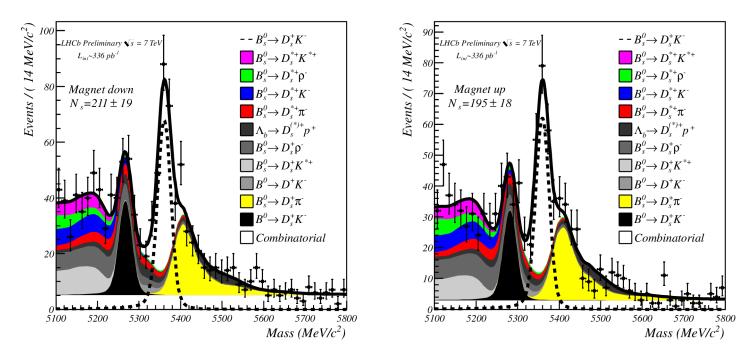
• Together with the a former LHCb measurement of f_{g}/f_{d} and the relative yields of several B/B modes one can calculate $B_{g} \rightarrow D_{g}\pi$

$$\mathcal{B}(B_s^0 \to D_s^- \pi^+) = \mathcal{B}\left(B^0 \to D^- \pi^+\right) \frac{\epsilon_{B^0 \to D^- \pi^+}}{\epsilon_{B_s^0 \to D_s^- \pi^+}} \frac{N_{B_s^0 \to D_s^- \pi^+} \mathcal{B}\left(D^+ \to K^- \pi^+ \pi^+\right)}{\frac{f_s}{f_d} N_{B^0 \to D^- \pi^+} \mathcal{B}\left(D_s^+ \to K^+ K^- \pi^+\right)}$$
$$\mathcal{B}(B_s^0 \to D_s^- \pi^+) = (3.04 \pm 0.19 \text{ (stat.)} \pm 0.23 \text{ (syst.)} + 0.18 \text{ (} f_s/f_d)\text{)} \times 10^{-3}$$

Branching ratio measurement of $B_s \rightarrow D_s K$

• Finally one can use the result from $B_{s} \rightarrow D_{s}\pi$ to calculate the absolute Branching Ratio for $B_{s} \rightarrow D_{s}K$

 $\mathcal{B}(B_s^0 \to D_s^{\mp} K^{\pm}) = (1.97 \pm 0.18 \text{ (stat.)} ^{+0.19}_{-0.20} \text{ (syst.)} ^{+0.11}_{-0.10} (f_s/f_d)) \times 10^{-4}$ World's most precise


- Details on the analysis can be found in LHCb-CONF-2011-057
- Paper in preparation

On the way towards $\boldsymbol{\gamma}$

Develop and validate a 2D fitter in mass and time

Bonn, 12/08/11

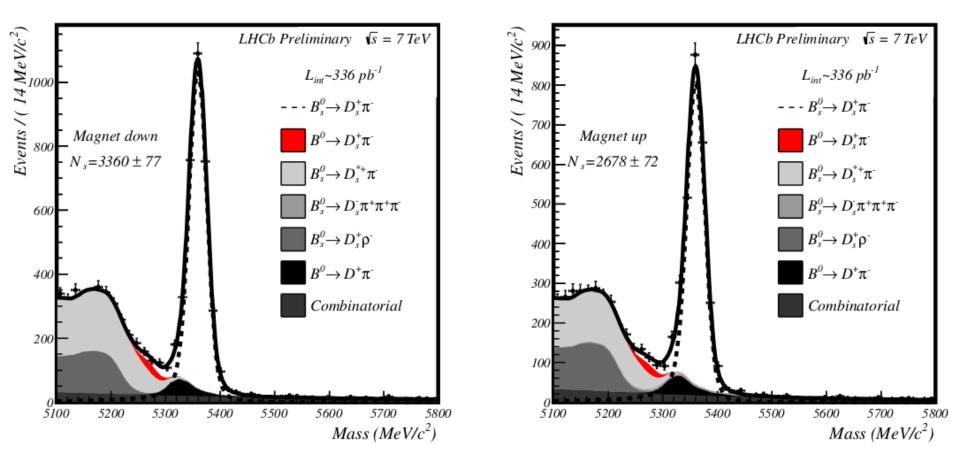
On the way towards γ

- Possibly many background components are leaking into the signal region
- Study time structure of these components
- Time acceptance and resolution has to be known
- Expected sensitivity $\sigma(\gamma + \phi_s) = 10-12^\circ$ with 1-2 fb⁻¹(2007)
- First result winter-conferences 2012(?)

Conclusion & Outlook

- Short introduction (& motivation) to the determination of γ from $B_s \rightarrow D_s K$
 - Theoretically clean
 - Very important SM benchmark measurement
- Observation of $B_s \rightarrow D_s K$ at LHCb
- Most precise measurement of $B_s \rightarrow D_s K/B_s \rightarrow D_s \pi$
- Next steps
 - Study background in more detail
 - Develop 2D fitter in mass and time
 - Time acceptance and resolution
 - Aim for winter-conferences (?)

Backup Slides


Backup

	$B^0_s \to D^{\mp}_s K^{\pm}$		$B_s^0 \to D_s^- \pi^+$		$\epsilon_{B^0_s \to D^\mp_s K^\pm} / \epsilon_{B^0_s \to D^s \pi^+}$	
	$\epsilon_{\rm cum}$ (%)	$\epsilon_{ m rel}(\%)$	$\epsilon_{\rm cum}$ (%)	$\epsilon_{ m rel}(\%)$	$\epsilon_{ m cum}$ (%)	$\epsilon_{ m rel}(\%)$
Generator		16.56 ± 0.04		16.13 ± 0.15	1.03 ± 0.01	1.027 ± 0.01
Recon.+Strip.	9.06 ± 0.04	9.06 ± 0.04	9.02 ± 0.02	9.02 ± 0.02	1.00 ± 0.01	1.00 ± 0.01
BDTG>0.1	8.15 ± 0.04	90.0 ± 0.1	8.14 ± 0.02	90.3 ± 0.1	1.00 ± 0.01	1.00 ± 0.01
L0	3.96 ± 0.03	48.6 ± 0.3	3.89 ± 0.02	47.8 ± 0.1	1.02 ± 0.01	1.02 ± 0.01
Hlt	2.57 ± 0.02	64.8 ± 0.4	2.50 ± 0.01	64.2 ± 0.2	1.03 ± 0.01	1.01 ± 0.01
$p_{bach} < 100 { m ~GeV}$	2.21 ± 0.02	86.1 ± 0.3	2.15 ± 0.01	86.0 ± 0.2	1.03 ± 0.01	1.00 ± 0.01
Total					1.058 ± 0.014	

Backup

Backup

Background type	Magn. Down	Magn. Up
$B_s^0 \to D_s^{*-} \pi^+$	70 ± 23	63 ± 21
$B_s^0 \to D_s^{*-} K^+$	80 ± 27	72 ± 34
$B_s^0 \to D_s^- \rho^+$	150 ± 50	135 ± 45
$B_s^0 \rightarrow D_s^- K^{*+}$	150 ± 50	135 ± 45
$B_s^0 \to D_s^{*-} \rho^+$	50 ± 17	45 ± 15
$B_s^0 \rightarrow D_s^{*-} K^{*+}$	50 ± 17	45 ± 15
$\Lambda_b \to D_s^- p + \Lambda_b \to D_s^{*-} p$	80 ± 27	72 ± 34