

1

Measurement of the CP-violating phase ϕ_s with $B_s \rightarrow J/\Psi \Phi$ decays at LHCb

Christian Linn Physikalisches Institut, Universität Heidelberg

CP-violation in B_s mixing

Ι/ΨΦ

Interference between mixing and decay: \rightarrow CP violating phase $\phi_s = \phi_M - 2 \phi_D$

tree-level transition dominant (penguin contribution $\sim 10^{-4} - 10^{-3}$)

 ϕ_D

 B_{s}

 B_{s}

 ϕ_M

 ϕ_s in Standard Model well predicted and small: -0.0363 ± 0.0017 rad [CKMfitter Eur.Phys.J.C411-131(2005)]

 ϕ_s in Standard Model well predicted and small: -0.0363 ± 0.0017 rad [CKMfitter Eur.Phys.J.C41 1-131 (2005)]

- Measurements from CDF and D0, first measurement of LHCb
- \succ Still large uncertainties on ϕ_s and $\Delta\Gamma_s$

- Single and dimuon trigger lines
- \blacktriangleright Cut on proper time t > 0.3 ps to suppress prompt background
- > Low background level: S/B \approx 11 in 3 σ mass window
- > Background mostly from real J/Ψ decays

P -> VV decay:

final state is mixture of CP even and CP odd eigenstates

Described by three polarization amplitudes:

 A_{\perp} (CP-odd) A_{0} , A_{\parallel} (CP-even)

Final states described by three transversity angles: $\Omega = \{\varphi, \theta, \psi\}$

Physics parameters: $\Gamma_s, \Delta\Gamma_s, \phi_s, |A_0|^2, |A_\perp|^2, \delta_\perp, \delta_\parallel,$

 $|A_s|^2, \delta_s$ non-resonant $K^+ K^-$ s-wave

background

Perform unbinned maximum likelihood fit in mass, proper time, transversity angles:

$$S(\lambda, t, \Omega) = \epsilon(t, \Omega) \cdot \left(\frac{1+qD}{2} \cdot P_B(\lambda, t, \Omega) + \frac{1-qD}{2} \cdot \overline{P_B}(\lambda, t, \Omega)\right) \otimes R_t$$

Ingredients:
Proper time and angular acceptance tagging Proper time resolution

$$P(\lambda; m, t, \Omega) = f_{sig} \cdot S(\lambda; m) S(\lambda; t, \Omega) + (1 - f_{sig}) \cdot B(\lambda; m) B(\lambda; t) B(\lambda; \Omega)$$

signal background

Acceptance and resolution measured on data:

- Non-flat proper time acceptance due to lifetime biasing cuts in trigger: acceptance parameters directly fitted using $B_s \rightarrow J/\Psi \Phi$ events cross-checked by comparing biased and unbiased trigger lines
- \blacktriangleright Resolution determined from prompt J/Ψ peak in data (triple Gaussian model)

Effective proper time resolution: ~ 50 fs

Dilution: $< D^{reso} >_{eff} = 0.673 \pm 0.013$

- > Angular acceptance changes composition of CP even and CP odd eigenstates
- Acceptance determined on MC and cross-checked on data
- 3d description necessary to account for correlation

> maximal deviations $\sim 5\%$:

mainly due to angular coverage of the detector and reconstruction effects

For $B_s \rightarrow J/\Psi \Phi$:

 \triangleright

Only tagging information from the "opposite side" B used Efficiency of OS tagger: ~ 17.5%

 \blacktriangleright OS tagger calibrated on data with $B^+ \rightarrow J/\Psi K^+$

Flavour tagging

Per event mistag: $\omega_i = p_0 + p_1 \cdot (\eta_i - \langle \eta \rangle)$

Dilution: $D_{eff} = (27.7 \pm 1.1 \pm 2.5)\%$

Tagging Power: $\epsilon D_{eff}^2 = (2.08 \pm 0.17 \pm 0.37)\%$

same side Kaon tagge

Kick Systematic uncertainties

A	主要	Re.
EQ.	一百	
	2	語言
6	UD	130
1	- Hand	Dist

Source	$\phi_s^{J/\psi \phi}$ [rad]	$\Delta\Gamma_s [\mathrm{ps}^{-1}]$
Description of background	0.06	0.004
Angular acceptances	0.004	0.008
z and momentum scale	—	0.002
Production asymmetry ($\pm 10\%$)	< 0.01	< 0.001
CPV in mixing & decay (\pm 5%)	< 0.03	< 0.006
Quadratic sum	0.07	0.011

- Tagging, proper time resolution, mixing frequency: floated in fit
- Background description: different treatments in fit
- > Angular acceptance: toy studies with reweighted MC acceptance
- Nuisance asymmetries:
 Production asymmetry, CPV decay/mixing simulated in toy experiments
- S-wave: toy studies and parameterization cross-checks

Systematic uncertainties ~40% of statistical error on ϕ_s , ~ 30% on $\Delta\Gamma_s$

Stat.

0.18

0.029

0.009

0.015

0.013

0.016

0.37

0.36

Value

0.13

0.123

0.656

0.238

0.497

0.041

2.94

3.00

Parameter

 ϕ_s [rad]

 $\Delta \Gamma_s [ps^{-1}]$

 $\Gamma_s [ps^{-1}]$

 $|A_{\perp}(0)|^2$

 $|A_0(0)|^2$

 $|A_{s}(0)|^{2}$

 δ_{\perp} [*rad*]

 δ_s [rad]

 $\delta_{\parallel}\in$ [3.01, 3.36] @ 68% C.L.

- > Most precise measurement on Γ_s , $\Delta\Gamma_s$ and ϕ_s
- \succ first direct experimental significant evidence of non-zero $\Delta\Gamma_s$
- good agreement with SM predictions

 \geq

 $\Delta\Gamma_s = 0.123 \pm 0.029 \, (stat) \pm 0.008 \, (sys) \, ps^{-1}$

 $\Gamma_s = 0.656 \pm 0.009 (stat) \pm 0.008 (sys) ps^{-1}$

➤ ~ 8300 signal candidates corresponding to
$$L \approx 337 \ pb^{-1}$$

Tagged time-dependent angular analysis of $B_s \rightarrow J/\Psi \Phi$ decays at LHCb

Summary

Effective proper time resolution of 50 fs

tagging power $\epsilon D^2 = (2.1 \pm 0.4)\%$

Most precise measurement of

BACKUP