Overview of Higgs Boson Searches in CMS

Grégory Schott¹

Institute of Experimental Nuclear Physics Karlsruhe Institute of Technology (Germany)

5th Annual Workshop of the Helmholtz Alliance "Physics at the Terascale", Bonn, 8 December 2011

1
schott@cern.ch

Outline

1 Standard Model Higgs searches at CMS

Low mass: $H \rightarrow \gamma\gamma$, $H \rightarrow \tau\tau$, $(H \rightarrow b\bar{b})$ Intermediate and high mass: $H \rightarrow WW \rightarrow 2l2\nu$, $H \rightarrow ZZ \rightarrow 4l$, $(H \rightarrow ZZ \rightarrow 2l2\tau, H \rightarrow ZZ \rightarrow 2l2q, H \rightarrow ZZ \rightarrow 2l2\mu)$

Combination of Higgs searches (CMS and ATLAS+CMS) Statistical combination procedure Combination with ATLAS Overview of theory uncertainties

 $\textbf{Son Standard Model Higgses} \\ \mbox{MSSM } A, h \rightarrow \tau \tau \\ \mbox{Charged Higgses}$

LHC and CMS data

LHC has been running steadily in 2011: pp collisions at $\sqrt{7}\,\mathrm{TeV}$

- Delivered 5.7 ${\rm fb}^{-1}$ of data, CMS recorded 5.2 ${\rm fb}^{-1}$ 85 - 90 % of this data is good for physics
- Report here on public Higgs results with $1.0 1.7 \, \text{fb}^{-1}$ (Summer 2011)

6 collisions per crossing (on average)

- 50 $\rm ns$ bunch spacing, peak luminosity: $2\times 10^{33}\,\rm cm^{-2}s^{-1}$
- ~ 15 collisions in the later data $(L_{peak} = 3.5 \times 10^{33} \, \mathrm{cm}^{-2} \mathrm{s}^{-1})$
- tough high-pileup conditions

 → improved trigger, reconstruction
 and developed dedicated methods

• Cross-sections, branching-ratios, pseudo-observables and related errors studied/compiled by Higgs Cross Section WG (Atlas-CMS-Theory)

Higgs production and decay

• Cross-sections, branching-ratios, pseudo-observables and related errors studied/compiled by Higgs Cross Section WG (Atlas-CMS-Theory)

• Higgs $\sigma \times BR$ tiny compared to QCD and EWK processes: $\sigma(W+j) \sim 28000, \ \sigma(Z+j) \sim 2800, \ \sigma(t\bar{t}) \sim 165, \ \sigma(WW) \sim 43$

CMS Higgs searches

Searched for SM Higgs in 8 decays modes:

- signatures with isolated leptons or photons in the final states;
- also MET, jets, *b*-tagging and au-ID

channel	mass range	$\int \mathcal{L} dt$	reference	
Channel	$({ m GeV}/c^2)$	$({\rm fb}^{-1})$		
$H ightarrow \gamma \gamma$	110 - 150	1.7	CMS-PAS-HIG-11-021	
$H \to \tau^+ \tau^-$	110 - 140	1.6	CMS-PAS-HIG-11-020	
$H ightarrow b ar{b}$	110 - 135	1.1	CMS-PAS-HIG-11-012	
$H \to WW^{(*)} \to I \nu I \nu$	110 - 600	1.5	CMS-PAS-HIG-11-014	
$H ightarrow ZZ^{(*)} ightarrow IIII$	110 - 600	1.7	CMS-PAS-HIG-11-015	
$H ightarrow ZZ^{(*)} ightarrow I\!\!I au au$	180 - 600	1.1	CMS-PAS-HIG-11-013	
$H ightarrow ZZ^{(*)} ightarrow I\!\!I u u$	250 - 600	1.6	CMS-PAS-HIG-11-016	
$H ightarrow ZZ^{(*)} ightarrow Ilqar q$	225 - 600	1.6	CMS-PAS-HIG-11-017	

ightarrow On-going analyses with $\sim 5\,{
m fb}^{-1}$ (not presented here)

(PAS-HIG-11-021) 1.66 fb⁻¹ 2 isolated, high- p_T photons forming a narrow peak • very small branching fraction $\mathcal{O}(10^{-4})$ but sensitive thanks to excellent performance of ECAL Backgrounds: prompt QCD photons, fakes from jets, irreducible backgrounds reducible backgrounds $\mathcal{O}(\alpha^2)$ $\mathcal{O}(\alpha_{\varsigma}\alpha^{2})$ $\mathcal{O}(\alpha_c^2 \alpha^2)$ $\mathcal{O}(\alpha_s^3 \alpha)$ $\mathcal{O}(\alpha_{\varsigma}\alpha)$ $\mathcal{O}(\alpha_{\varsigma}\alpha)$ theory uncertainty $\sim 25\%$ theory uncertainty $\sim 30\%$ Unbinned analysis based on $m_{\gamma\gamma}$:

- narrow signal peak; width is resolution-dominated $(3-8 \, {\rm GeV}/c^2)$
 - correction to photon efficiency, energy scale, energy resolution from $Z \to e^+e^-$ data events and MC smeared to match data resolution

$H\to\gamma\gamma$

- Analysis with 8 categories of varying mass resolution:
 - $p_T^{\gamma\gamma} > 40 \, {
 m GeV}/c$ (or not)
 - η_{γ} : both photons in barrel (or not)
 - conversion probability: both photons likely non-converted (or not)

$H\to\gamma\gamma$

(PAS-HIG-11-021) 1.66 fb⁻¹

• Compute 95% C.L. upper limits on σ_H / σ_H^{SM} versus m_H

• Analysis also excludes fermiophobic Higgs in range $110 - 112 \,\mathrm{GeV}$

$H\to\tau\tau$

Studied channels with τ decaying into μ , e and hadrons: $\tau_e \tau_h, \tau_\mu \tau_h, \tau_e \tau_\mu$

- Separate cleaner vector boson fusion topologies with:
 - 2 jets, $p_T > 30 \,\mathrm{GeV}$, $M_{jj} > 350 \,\mathrm{GeV}$
 - $|\Delta \eta_{jj}| > 3.5, \ \eta_1 imes \eta_2 < 0$

• Boosted visible τ -decay products and ν tend to be collinear:

• apply topological cut based on p_T^{ll} and E_T^{miss}

$H\to\tau\tau$

(PAS-HIG-11-020) 1.6 fb⁻¹

Backgrounds:

- dominant irreducible background $Z \rightarrow \tau \tau$: shape from MC, normalization from $Z \rightarrow l^+ l^-$ measurement and fit of m_{vis}
- W/Z+jets, QCD, $t\bar{t}$, WW/ZZ: estimated from control samples

Binned analysis based on $m_{\tau\tau}^{vis}$:

• computed from measured momenta of *e*, μ , τ_{had} (no ν recovery)

Working on adding $\tau_{\mu}\tau_{\mu}$ channel:

- errors mostly statistically dominated
- \rightarrow presentation of A. Bethani (yesterday)

$H \rightarrow WW \rightarrow 2I2\nu$

(PAS-HIG-11-014) 1.5 fb⁻¹

- Scalar Higgs: small opening angle $\Delta \phi(l^+, l^-)$
- Large MET (missing ν 's from W)
 - signal extracted from event counts (no mass peak)

Classification in categories with 0, 1 or 2 jets

- exploit differences in production mechanisms (such as VBF)
- 5 categories: 0 and 1 jet splitted in same/different lepton-flavour groups

Controled reduction of background crucial to the analysis:

- QCD and W + j: require lepton $p_T > 10 \text{ GeV}$, tight ID and isolation
- Drell-Yann: strongly reduced with MET cut; veto $Z
 ightarrow \mu \mu/ee$
- top backgrounds: apply jet-veto (in particular on *b*-jets)
- $pp \rightarrow WW$ continuum: irreducible; use kinematic discrimination
- estimated with data-driven techniques;
 - except WW at high m_H and WZ/ZZ: taken from MC

Optimizations, dependant on m_H : M_{II} , $\Delta \phi_{II}$, p_T^{l1} , p_T^{l2} , $M_T(II, MET)$

$H \rightarrow WW \rightarrow 2I2\nu$

(PAS-HIG-11-014) 1.5 fb⁻¹

Main kinematic observables: M_{ll} and $\Delta \phi(l^+, l^-)$ for 0, 1, 2-jets events

Grégory Schott (KIT)

Overview of Higgs Boson Searches in CMS

(PAS-HIG-11-014) 1.5 fb⁻¹

• Event counts at $140\,{ m GeV}$

process	0-j ee, μμ	0-j e μ	1-j ee, μμ	1-j e μ	2-ј
backgrounds	44.0 ± 6.2	40.6 ± 7.0	17.8 ± 3.5	12.6 ± 3.7	5.3 ± 1.7
Higgs	19.1 ± 4.3	16.1 ± 3.6	7.7 ± 2.6	5.3 ± 1.8	2.5 ± 0.3
data	46	41	23	23	7

 $H \rightarrow WW \rightarrow 2I2v + 0/1/2 \text{ jets (CLs)}$

Higgs excluded at 95% CL in range $147-194\,{\rm GeV}$

- Currently working on an improved analysis using MVA discrimination
- See also presentation of Ch. Hackstein on theory uncertainties

Grégory Schott (KIT)

(PAS-HIG-11-015) 1.66 fb⁻¹

Golden channel: fully reconstructed event, m_H resolution $2 - 4 \,\mathrm{GeV}$

- Selections:
 - Z_1 : $p_T^{min} > 10$, $p_T^{max} > 20$, $60 < M_{II} < 120 \,\mathrm{GeV}$
 - Z_2 : 20 < M_{II} < 120 GeV/ c^2
 - $M_{4/} > 120 \, {
 m GeV}/c^2$
 - impact parameter significance > 4
- mainly $pp \rightarrow ZZ^{(*)}$ irreducible background after selection (shape taken from MC; rate from Z yield in data and theory predictions for σ_{ZZ}/σ_Z)

Cut	QCD	tī	Z+jets	Z bb/cc	$Z\gamma$	WZ	ZZ	$m_{\rm H} = 200 {\rm GeV}/c^2$	Total	Data
Trigger	1.53×10^{5}	2.18×10^{3}	4.82×10^{5}	2.24×10^{5}	2.64×10^{3}	221	49.8	10.2	(8.72±0.04)×10 ⁵	8.72×10^{5}
Z1	1.07×10^{4}	1.51×10^{3}	4.43×10^{5}	2.05×10^{5}	2.35×10^{3}	184	43.3	9.29	(6.65±0.01)×10 ⁵	6.82×10^{5}
$Z_1 + \ell$	34.6	74.8	1.05×10^{3}	804	123	51.2	13.9	3.20	(2.16±0.04)×10 ³	2.52×10^{3}
$Z_1 + \ell^+ \ell^-$	0	0.96	0.29	0.89	0.29	0.063	5.21	1.48	7.7±0.5	12
Isolation	0	0	0	0.15	0.29	0.027	4.85	1.31	5.31±0.26	5
IP	0	0	0	0	0.29	0.009	4.48	1.21	4.77±0.21	5
Kinematics	0	0	0	0	0.14	0.009	4.04	1.20	4.19 ± 0.16	5
									·	

Grégory Schott (KIT)

Overview of Higgs Boson Searches in CMS

(PAS-HIG-11-015) 1.66 fb⁻¹

Results of the shape-based analysis

21 observed events (as expected)

Also interpretation in framework of fourth-fermion family (SM4): excluded in 110 - 112 GeV range $H \rightarrow b \bar{b}$

- important for Higgs couplings
- associated production with W/Z
- 5 final states: $W(\mu\nu)H(bb)$, $W(e\nu)H(bb)$, $Z(\mu\mu)H(bb)$, Z(ee)H(bb), $Z(\nu\nu)H(bb)$

 $H \rightarrow ZZ^{(*)} \rightarrow 2I2\tau$

- 8 final states: $Z(II) + \tau_{had}\tau_{had}$, $Z(II) + e\tau_{had}$, $Z(II) + \mu\tau_{had}$, $Z(II) + e\mu$ (II = ee or $\mu\mu$)
- broad signal peak
- data-driven QCD estimation

 $H \rightarrow ZZ^{(*)} \rightarrow 2I2\nu$

- 2 sub-channels: $2e2\nu$ and $2\mu 2\nu$
- m_H -dependant cuts on E_T^{miss} , m_T and $\Delta \Phi(E_T^{miss}, \text{jet})$
- Z+jets background estimated from γ +jets in data

 $H \rightarrow ZZ^{(*)} \rightarrow 2 lq \bar{q}$

- categories based on lepton flavour and number of *b*-tagged jets
- search for a peak in $m_{2/2q}$
- use Higgs angular distribution
- quark-jet/gluon-jet discriminator

CMS instrumental systematic uncertainties on signal

Simplified overview of typical values:

Systematic Un	certainties	Higgs boson decay channels (mass in GeV/c^2)							
			1.1.		WW		Ζ	Ζ	
source	type	77	00	17	$\ell \nu \ell \nu$	lll	$\ell\ell\tau\tau$	$\ell\ell\nu\nu$	$\ell \ell q q$
		(120)	(120)	(120)	(150)	(200)	(400)	(400)	(400)
luminosity	lumi				4.5%				
trigger	μ		2%			2%	1%	2%	1%
efficiencies	e		2%			2%	1%	1%	1%
	γ	1%							
	E_T^{miss}		2%						
reconstruction	μ		4%	1%	3%	3%	2%	2%	1%
efficiencies	e		4%	2%	4%	3%	6%	2%	2%
	γ	1-3%							
	$\tau_{\rm had}$			6%			10%		
	b-tag		20%						20%
p_T scale	μ				2%	1%	1%	2%	1%
(event yield)	e				2%	2%	2%	5%	2%
	$jets/E_T^{miss}$		2%	4%	2-10%			2%	0.2%
p_T scale	μ					0.3%			
(shape)	e					0.3%			
	γ	0.1-0.3%							
	$\tau_{\rm had}$			3%					
p_T resolution	$jets/E_T^{miss}$		10%						
(event yield)									
	$jets/E_T^{miss}$		2%	4%	210%			2%	0.2%
p_T resolution	μ					10%			
(shape)	e					10%			
	γ	20%							

• A table of theory-related systematics will follow in a few slides

Grégory Schott (KIT)

Outline

1 Standard Model Higgs searches at CMS

Low mass: $H \rightarrow \gamma\gamma$, $H \rightarrow \tau\tau$, $(H \rightarrow b\bar{b})$ Intermediate and high mass: $H \rightarrow WW \rightarrow 2l2\nu$, $H \rightarrow ZZ \rightarrow 4l$, $(H \rightarrow ZZ \rightarrow 2l2\tau, H \rightarrow ZZ \rightarrow 2l2q, H \rightarrow ZZ \rightarrow 2l2\mu)$

Combination of Higgs searches (CMS and ATLAS+CMS) Statistical combination procedure Combination with ATLAS Overview of theory uncertainties

 $\textbf{Son Standard Model Higgses} \\ \mbox{MSSM } A, h \rightarrow \tau \tau \\ \mbox{Charged Higgses}$

Statistical combination: procedure (C

(CMS-NOTE-2011-005)

Convergence on statistical procedure and on correlated systematics with ATLAS (LHC Higgs Combination Group)

- Upper limits on $\mu = \sigma / \sigma_{SM}$ in a modified-frequentist approach:
 - MC sampling of the test statistic q_{μ} for *B*-only and *S* + *B* hypotheses

$$q_{\mu} = -2 \ln rac{L(data; \mu, \hat{ heta}_{\mu})}{L(data; \hat{\mu}, \hat{ heta}_{\mu})} ~~(0 \leq \hat{\mu} \leq \mu)$$

- different from LEP and Tevatron
- has good asymptotic behaviour
- nuisance parameters profiled in q_{μ} (toys generated around $\hat{ heta}_{\mu}$)
- uncertainties modeled with log-normal pdfs (probability density functions)
- compare the *p*-values to the value of q_{μ} in data and compute ratio:

$$CL_{S} = \frac{CL_{SB}}{CL_{B}} = \frac{p_{\mu}}{1 - p_{0}}$$
 • protects against downward fluctuations of background

- vary hypothesis (value of μ tested) until reach exclusion with $\mathit{CL}_S < 0.05$
- Correlations seriously taken into account in the combination
- \rightarrow Combination and statistical analysis with the RooStats software package

8 Dec. 2011 20 / 54

Statistical combination CMS: results

(PAS-HIG-11-022)

Expectation: SM exclusion range $130-440\,{
m GeV}$ (median $\sigma/\sigma_{SM}<1$)

Data: 95% CL exclusions in ranges: 145 – 216, 226 – 288, 310 – 400 GeV

p-value: probability of an excess from the B-only hypothesis at least as large

as the one observed. $Z=\sqrt{q_0^{obs}}$

• the combination is not the product of individual *p*-values!

• taking into account the lookelsewhere effect: $p_0^{global} \sim 0.4$ Combination ATLAS-CMS ATL-CONF-2011-157) $1.0 - 2.3 \,\mathrm{fb}^{-1}$

(CMS-PAS-HIG-11-023,

Combination of:

- CMS: CMS-PAS-HIG-11-022 + update of $H \rightarrow \tau^+ \tau^-$ analysis
- ATLAS: ATL-CONF-2011-135 + update of $H \rightarrow ZZ \rightarrow 2/2\nu$ analysis
 - 67 signal sub-channels (varies with m_H)
 - nuisance parameters: 268 ($m_H \leq$ 135) or 191 ($m_H \geq$ 250)

 $\begin{array}{l} \mbox{Combination ATLAS-CMS} \\ \mbox{ATL-CONF-2011-157} \ 1.0 - 2.3 \, {\rm fb}^{-1} \end{array}$

(CMS-PAS-HIG-11-023,

Combination of:

- CMS: CMS-PAS-HIG-11-022 + update of $H \rightarrow \tau^+ \tau^-$ analysis
- ATLAS: ATL-CONF-2011-135 + update of $H \rightarrow ZZ \rightarrow 2/2\nu$ analysis
 - 67 signal sub-channels (varies with m_H)
 - nuisance parameters: 268 ($m_H \le 135$) or 191 ($m_H \ge 250$)

SM Higgs exclusion ranges: 95% CL upper limits below r = 1:

- expected: $124 520 \, {
 m GeV}/c^2$
- observed: $141 476 \, \text{GeV} / c^2$

Theory-related uncertainties:

- for Higgs: provided by LHC Higgs Cross Section and PDF4LHC groups
- for SM backgrounds: calculated separately by ATLAS and CMS (taking into account analysis-specific acceptances)
- associated with partonic luminosities, or PDFs, and α_S
- associated with missing higher-order theory corrections
 - assessed by varying QCD renormalisation and hadronisation scales
 - assumed uncorrelated among processes; except for those with W/Z (eg. $pp \rightarrow WH$ and $pp \rightarrow ZH$)
- on branching ratios: assumed mostly negligible

- on acceptance of analysis cuts (QCD scales and PDFs) assumed negligible (in comparision to σ_{total})
 - except for exclusive production modes with 0, 1 and 2 jets
 - $H \rightarrow WW$ acceptance uncertainty small but included
- further possible WW modeling uncertainties (Drell-Yan, $W\gamma$ with asymmetric γ conversion, etc.): not considered at present
- jets-splitting in $H \rightarrow WW$ analysis makes it sensitive to underlying event and parton showering modelling
 - signal simulated with POWHEG/PYTHIA in both experiments $\rightarrow \mbox{correlated}$
- probability of a loosely defined lepton faking a lepton passing the final high quality selection assessed with same methods
 - difference between $W\mbox{-}{\rm associated}$ jets and generic di-jet and $\gamma\mbox{-}{\rm jet}$ $\rightarrow\mbox{correlated}$

Source	Affected Processes	Typical uncertainty
$PDFs+\alpha_s$	$gg \to H, t\bar{t}H, gg \to VV$	±8 %
(cross sections)	VBF $H, VH, VV@NLO$	±4 %
Higher-order	total inclusive $gg \rightarrow H$	+12%
uncertainties	inclusive "gg" $\rightarrow H + \geq 1$ jets	$\pm 20\%$
on cross	inclusive "gg" $\rightarrow H + \geq 2$ jets	$\pm 20\%$ (NLO), $\pm 70\%$ (LO)
sections	VBF H	$\pm 1 \%$
	associated VH	$\pm 1 \%$
	$t\bar{t}H$	+4%
	uncertainties specific to high mass Higgs boson, see Section 2.1	$\pm 30\%$
	V	$\pm 1 \%$
	VV up to NLO	$\pm 5 \%$
	$gg \rightarrow VV$	$\pm 30 \%$
	$t\bar{t}$, incl. single top productions for simplicity	$\pm 6 \%$
acceptance	acceptance for $H \to WW \to \ell \nu \ell \nu$ events	±2%
phenomenology	modelling of underlying event and parton showering	$\pm 10 \%$
	fake lepton probability $(W + \text{jets} \rightarrow \ell \ell^{fake})$	$\pm 40\%$
luminosities	ATLAS and CMS uncertainties on their luminosity measurements	$\pm 3.7\%$, $\pm 4.5\%$

Each uncertainty source is usually correlated among affected channels:

- but the size of an uncertainty may still vary from one channel to another
- some effects, even if mostly uncorrelated, are assumed 100% correlated (simplification) \rightarrow limits are then slightly more conservative

Impact of theory uncertainties

Combined limits with and without theoretical systematic uncertainties:

• at this stage: differences of 3 - 6% except for the very high mass range: $\sim 20\%$ at $600 \text{ GeV}/c^2$ (from σ_H and m_H shape)

Choice of data-driven methods to constrain uncertainties: how much "data-driven" are they?

Theory uncertainties will relatively play a bigger role as statistics will increase!

Outline

1 Standard Model Higgs searches at CMS

Low mass: $H \rightarrow \gamma\gamma$, $H \rightarrow \tau\tau$, $(H \rightarrow b\bar{b})$ Intermediate and high mass: $H \rightarrow WW \rightarrow 2l2\nu$, $H \rightarrow ZZ \rightarrow 4l$, $(H \rightarrow ZZ \rightarrow 2l2\tau, H \rightarrow ZZ \rightarrow 2l2q, H \rightarrow ZZ \rightarrow 2l2\mu)$

Combination of Higgs searches (CMS and ATLAS+CMS) Statistical combination procedure Combination with ATLAS Overview of theory uncertainties

 $\textbf{Son Standard Model Higgses} \\ \mbox{MSSM } A, h \rightarrow \tau \tau \\ \mbox{Charged Higgses}$

5 Higgs bosons expected in MSSM:

• 3 neutral (h, H: CP-even; A: CP-odd) and 2 charged (H^+ , H^-)

- *B* category: ≥ 1 *b*-jet with $p_T > 20 \text{ GeV}/c$; < 2 jets with $p_T > 30 \text{ GeV}/c$
- non-*B* category: 0 *b*-jet with $p_T > 20 \text{ GeV}/c$; < 2 jets with $p_T > 30 \text{ GeV}/c$

$\mathsf{MSSM}\ \textit{A},\textit{h} \to \tau\tau$

Cross-section limits translated into $(\tan \beta - m_A)$ constraints

- Production cross section increases with $\tan\beta^2$
- Stringent new bounds in the MSSM parameter space

CMS Preliminary 2011 1.6 fb⁻¹

Charged Higgs

(PAS-HIG-11-008, PAS-HIG-11-007) 1 fb⁻¹

Also search for an exotic doublycharged Higgs (related to m_{ν} in type II see-saw models)

Grégory Schott (KIT)

Overview of Higgs Boson Searches in CMS

Conclusion

With the first inverse femtobarns a very rich program opened up:

- CMS physics results available at: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
- Detailled selection of early CMS SM Higgs results:
 - wide 95% exclusion range(s) disfavouring a high-mass Higgs
 - excess at low mass requires further studies and increased statistics
 - recent combination of ATLAS-CMS analyses
 - \rightarrow hardest region to reach at low mass; every channel counts

Also searched for the Higgs beyond Standard Model:

- constraints on MSSM Higgs, fermiophobic Higgs and $4^{\rm th}$ generation

Larger dataset already available:

• their analysis is on-going; will allow to improve our Higgs constraints

BACKUP SLIDES

The CMS detector

Experimental constraints on the Higgs boson

One free parameter in the SM Higgs sector: can choose it as m_H

Indirect constraints: Higgs present in virtual loops (of W/Z propagators, ...): $m_H < 161 \,\mathrm{GeV}/c^2$ at 95% CL http://lepewwg.web.cern.ch/LEPEWWG/

Direct searches (yellow regions on plot):

- at LEP-2: [PLB 565,61 (2003)]: $m_H > 114.4 \, {\rm GeV}/c^2$ at 95% CL
- at Tevatron [arXiv:1107.5518]: 95% CL exclusions in range 156 - 177 GeV/c²

Report here on first analysis results at CMS/LHC (Summer 2011)

(PAS-HIG-11-022)

Channel	Experiment	m_H range	Lumi	Number of	Type	Reference
		(GeV/c^2)	(fb^{-1})	sub-channels	of analysis	
И	ATLAS	110 - 150	1.1	5	mass shape (unbinned)	[82]
$II \rightarrow \gamma\gamma\gamma$	CMS	110 - 150	1.7	8	mass shape (unbinned)	[91]
H	ATLAS	110 - 150	1.1	5	mass shape (binned)	[83, 84]
$11 \rightarrow 77$	CMS	110 - 140	1.6	6	mass shape (binned)	[14]
$U \rightarrow bb$	ATLAS	110 - 130	1.0	2	mass shape (binned)	[85]
$\Pi \rightarrow 00$	CMS	110 - 135	1.1	5	cutting and counting	[92]
H . WW C.C.	ATLAS	110 - 300	1.7	6	cutting and counting	[86]
$\Pi \to W W \to \ell \nu \ell \nu$	CMS	110-600	1.5	4	cutting and counting	[93]
H . 77 . 0000	ATLAS	110-600	2.0 - 2.3	3	mass shape (binned)	[88]
$\Pi \rightarrow ZZ \rightarrow t\bar{t}\bar{t}\bar{t}$	CMS	110-600	1.7	3	mass shape (unbinned)	[94]
$H = 77 = 2/2\pi$						
$\Pi \rightarrow Z Z \rightarrow Z \ell Z l$	CMS	180 - 600	1.1	8	mass shape (unbinned)	[95]
$H \rightarrow 77 \rightarrow 2\ell 2\mu$	ATLAS	200-600	2.0	2	m_T shape (binned)	[15, 89]
$11 \rightarrow 2.2 \rightarrow 2\ell 2\nu$	CMS	250-600	1.6	2	cut&count	[96]
II . 77 . 9/9-	ATLAS	200-600	1.0	2	mass shape (binned)	[90]
$11 \rightarrow 22 \rightarrow 2\ell 2q$	CMS	225 - 600	1.6	6	mass shape (unbinned)	[97]

ATLAS instrumental systematic uncertainties on signal

Systematic un	certainties	Higgs boson decay channels (mass in GeV/c^2)						(c^{2})
source	type	$\gamma\gamma$	bb	$\tau \tau$	$WW \\ \ell \nu \ell \nu$	eeee	ΖΖ ℓℓνν	llqq
		(120)	(120)	(120)	(150)	(200)	(400)	(400)
luminosity	lumi				3.7%			
reconstruction	μ		1%	1.1%	0.6%	1.2%	0.7%	0.5%
efficiencies	e		1%	3.4%	2%	1.9%	1.2%	1.1%
	γ	11%						
	$\tau_{\rm had}$			8.3%				
	b-tag		16%				0.7%	4.9%
p_T scale	$jets/E_T^{miss}$		2-8%	16%	6%		1.4%	1.3~%
(event yield)	e		1%	$^{+1.2}_{-0.1}\%$	0.2%	0.1%	0.2%	0.3%
p_T resolution	μ		2%		1.5%	0.1%	1%	1.2%
	e		1%		0.1%	0.1%	0.2%	0.2%
	γ							
	jets		1%	0.2%	2%		0.2%	2.2%
	E_T^{miss}		2%	0.4%	0.6%			

CLs versus Bayesian and PL limits

• checked self-consistency of Bayesian and CL_s limits at the 10-20% level

Impact of the Higgs channels individually:

Significance

To quantify an excess use the test statistic: $q_0 = -2 \ln \frac{\mathcal{L}(\text{data}|0,\hat{\theta}_0)}{\mathcal{L}(\text{data}|\hat{\mu},\hat{\theta})}$ if $\hat{\mu} \ge 0$

and $q_0=0$ otherwise. $Z=\sqrt{q_0^{
m obs}}$

- largest excess has a local significance of 3.1 (limit less restrictive than in the *B*-only hypothesis)
- after estimation of LEE correction $Z\sim 1.6\sigma$