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Properties, Performance, 
Future Applications, R&D
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Properties of Diamond Detectors
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Why Diamond

Cons:

➢ High E
pair-creation

 (13.5 eV)
→ Less signal, but S2N-ratio 

comparable to Si

➢ Rather high costs

➢ Not as well understood as Si
→ More R&D efforts needed

Pros:

➢ High band gap (5.5 eV)
→ Very high breakdown field > 1e7 V/cm
→ Very high resistivity > 1e11 Ωcm

→ Large area
→ Very low leakage current ~ few pA

➢ Low dielectric constant (5.7)
→ Low capacitance → Low noise

➢ High displacement energy (43 eV/atom)
→ Radiation hard → No replacement

➢ High mobility (~2000 cm2/Vs)
→ Fast signals

→ High collision rate

➢ Very wide sensitivity range
→ Single MIP to 1 THz tested

➢ Wide operational 
temperature range

➢ No cooling (no “thermal run-away”)
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Production of CVD diamonds

Microwave growth reactor

Diamond synthesis from plasma

Material copies substrate

Surface image of pCVD

pCVD diamond wafer

Courtesy E6

Dots are on 
1 cm grid
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Common circuit for Diamond Detectors 

Diamond is solid state ionization chamber

Courtesy 
CIVIDEC
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Modes of Operation

Counting Mode Calorimetric Mode

Courtesy 
CIVIDEC

Hole collection 
for reverse bias
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pCVD vs scCVD

pCVD Diamond:

 very short signal 
~2ns FWHM @ 1V/um

optimal double pulse resolution
charges lost at trapping centres

scCVD Diamond:

 short signal 
~5ns FWHM @ 1V/um

optimal Signal-to-Noise ratio
lower trapping centre concentration

full charge collection 
distance
up to 800 μm 
demonstrated 

CCD ≈ 250 μm at 150 V

gr
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CCD = d * Q
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Time resolution

Phase measurement

106 MHz RF

9.4 ns RF period

100 mV/div
20 ns/div 10 ps phase

resolution

615 ps single
pulse resolution

Measure 200 MeV protons for 
Proton Therapy

Beam structure
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Energy resolution of scCVDs

Distribution of measured total signal charge

sigma / mean ≈ 6%

α not exactly monoenergetic 
→ detector resolution ≤ 6%

α from Am-241 on scCVD DD 
(in vacuum)

α
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Energy resolution of pCVDs

Distribution of measured total signal charge

IBA Cyclotron
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Radiation hardness

Samples radiated up to 2.25e17 cm-2 
with 500 MeV protons

Logarithmic scale

~ 5% at 2e17

JInst 6:P05011,2011
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Performance of Diamond Detectors
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The CMS BCM1F

Tasks and requirements :

Monitoring and protection

MIP detection, low power, radiation hard

Feed back BGND levels to LHC

Instantaneous luminosity to CMS

Design:

4 scCVD Diamond sensors on each side  

scCVD

Pre-amplifier 

optical driver

Final
installation

Beam 
pipeTo back-end

(5 x 5 x 0.5 mm3)

Courtesy 
E. Castro
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IP

The CMS BCM1F

Location:

r = 50 mm
z = ± 1.8 m (~6.25 ns)

Courtesy 
E. Castro
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The CMS BCM

Measure halo and collision rate

Measure instantaneous luminosity

Studies ongoing to extract bunch-by-bunch lumi

Courtesy 
E. Castro
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ATLAS BCM
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ATLAS BCM

Similar location, but pCVDs, ultra-fast electronics

Run 167607
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LHC Diamond BLM

Record “Post Mortem” data after beam dump 
(among other functionalities)

6/10 installed

LHC – Collimator Area
Courtesy 
CIVIDEC
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LHC Diamond BLM

Unidentified Falling Objects (UFOs) seen from time to time

Create huge losses -> Beam dump
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LHC Diamond BLM

Fast Diamond BLMs allow closer look at UFOs:
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LHC Diamond BLM

Closer look at UFOs



08.12.2011 5th Annual Workshop   –   Hendrik Jansen Page  22

LHC Diamond BLM

Closer look at UFOs
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Future Diamond Detectors
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ATLAS DBM

Purpose

Bunch-by-bunch luminosity monitor
- pixelized and larger acceptance than BCM
- aim < 1% per BC per LB

Bunch-by-bunch beam spot monitor
- need telescope structure for tracking
- distinguish halo and collision events

Design

4 telescopes of 3 sensors per side 
-> 24 modules

At  |η| ≈ 3.3

Use pixel support structure

Use IBL read-out chip
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ATLAS DBM

Location of DBM
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ATLAS DBM

BCM

DBM PIXEL
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DBM Specs

Property  Specification

Sensor size
pixel size
channels

21 mm x 18 mm 
250 um x 50 um

336 x 80 = 26880

Sensor thickness 400 – 500 um

Min. CCD 200 um -> 7200 e-

Min. CCD after 2e15 cm-2 100 um -> 3600 e-

Max operation voltage 1000 V

Read-out chip FE-I4

50 µm in Φ
σz ~4 cm

50 µm in r
σz ~0.6 cm
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CMS Pixel Lumi Telescope (PLT)

• Dedicated, stand–alone luminosity monitor

• Eight 3-plane telescopes each end of CMS

• 1.60 pointing angle  r = 4.8 cm, z = 175 cm

• Diamond pixel sensors  pixel area: 3.9 mm x 3.9 mm

• Count 3-fold coincidences  fast-or signals (40 MHz)

• Full pixel readout  pixel address, pulse height (1 kHz)

• Stable 1% precision on bunch-by-bunch relative luminosity

Courtesy 
S. Schnetzer
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PLT Status

Two full cassettes (each 4 telescopes)
under continuous, stable operation at CERN

Full system set up

Near flawless operation

Both studies in Oct test-beam

Installation of 2 cassettes during winter 
shut-down behind HF, z = 15 m

All planes for 
full PLT produced
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CVD Diamond in HEP
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R&D efforts
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Cryogenic BLM in Triplet Magnets

Place BLMs as close to the beam as possible
→ Better separation of collision debris and halo/losses
→ Detector operation at 1.9 K, within the cold mass

Choose detector material
→ Candidates are: CVD diamond, 
silicon, liquid He

Diamonds not tested yet at 
ultra-cold temperatures
→ Interesting!

Characterize scCVD diamonds at cryogenic temperatures
using liquid He cooling
→ Measure temperature dependence of diamond properties

““Diamonds Diamonds 
Are a Girl's Are a Girl's 
Best Friend!”Best Friend!”
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Details of Measuring Set-up

The Transient-Current Technique (TCT) with α particles: 

→ measure the transient current 

1) α particles impinge on top side
2) Create eh-pairs close to electrode
3) Electric field separates charges
4) Drifting charges induce current

→ Pos. (neg.) bias → Measure e- (h+)
 
→ Use ultra-fast 2 GHz, 40 dB, 
200 ps rise time current amplifier

→ Use broad-band 3 GHz scope

→ Use RF components 
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Details of Measuring Set-up

SETTINGS:
 

→ TCT in vacuum
→ Temp: 4.5 K - 300 K,  bias ≤ 1000 V
→ Read-out from HV-side
→ Use collimator (avoid edge-effects)
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TCT and the Plasma Effect

FACTS:
 

→ αs produce high density charge cloud
→ Outer charges screen inner ones

→ E-Field decreases inside the plasma
→ Increased E-Field decreases lifetime of plasma

cloud≈
3⋅105 pairs

3 m
2
10 m

≈1015 cm−3

i t =∑k
ik t 

                    =∑k
e Ew vk  t 

                    =
e
d
∑k

vk t−t k
start ;

            vk t =0 for t0

From Ramo-Theorem:
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Plasma Effect at 295 K

plasma
phase

pure drift 
phase

collection 
phase

τplasma

start of
drift

Clear evidence 
for plasma effect

at room temp.
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TCT Hole Pulses

295 K 150 K

110 K 80 K
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Integrated Charge

Charge constant in range 140 K to 300 K

Steep drop from 140K down to 67 K
→ plasma associated trapping and 
recombination

Sanity check:
corrected charge = 50 fC
4.6 MeV alpha (coating of source!)
→ Pair creation energy = 14.7 eV
→ Literature: 13.5 eV

→ OK

Breaking News:Breaking News:
Measured Measured αsαs  
at 4.7 K last weekat 4.7 K last week
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Hole Mobility and Velocity

v dr=
 0 E

1
0 E
vsat

Fits yield:
0,h

295 K=2278±110 cm2/Vs

v sat
295 K=11.8⋅106±0.8⋅106 cm /s

 0,h
67 K

=7300±1850 cm2
/Vs

v sat
67 K

=13.4⋅106
±1.4⋅106 cm /s

Increase 
of <v

drift
>

v
sat

ve
lo

ci
t y

 in
 c

m
/s

Mobility μ
h 
and avg. drift velocity <v

drift
> at RT as expected

μ
h
 increases down to 67 K (→ <v

drift
> increases as well)

→ no onset of impurity scattering

v
sat

 ~ constant with temperature
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Beam tests
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Set-up 

PS Beam on Cryostat (24 GeV protons)

Diamond cooled down to LiHe temperature

AC-coupled to 2GHz pre-amplifier

Cryo

scCVD

PS Beam

ScopeScope

Courtesy
 C. Kurfuerst
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TCT signals with PS protons

5ns 
FWHM

290 K

Courtesy
 C. Kurfuerst
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TCT signals with PS protons

5ns 
FWHM

4ns 
FWHM

Pulses shorter and smaller Pulses shorter and smaller 
at LiHe temperatureat LiHe temperature
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Neutron measurements
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Neutron Flux at ITER

Measure 14 MeV neutron flux

(n,α)9Be:  C + n → 9Be + α
E

max
 = 7.915 MeV

α absorption in diamond
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Neutron Flux at ITER

Neutron Beam measurements

-> measure neutron flux online 
and give feed-back to ITER machine

7.9 MeV

scCVD in 14 MeV neutron beamscCVD in 14 MeV neutron beam

Φ=
Counts

ε ηY (E ,σ)
Courtesy
C. Weiss
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Diamond ...

... is in use as radiation monitors for ATLAS, CMS, LHC.

... is very promising candidate for future detectors.

... is radiation-hard, fast, low noise, high sensibility range.

... doesn't need cooling.

... needs more research:
impurities composition energy levels of traps
high/low T features contacts edge effects etc

... brings researchers together: CERN RD42, GSI Carat.
Diamond communities are growing!
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Back-up
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Signal range
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