Diamond Detectors

Properties, Performance, Future Applications, R&D

Properties of Diamond Detectors

08.12.2011 5th Annual Workshop – Hendrik Jansen

Why Diamond

Pros:

- High band gap (5.5 eV)
 - \rightarrow Very high breakdown field > 1e7 V/cm
 - → Very high resistivity > 1e11 Ω cm
 - → Large area
 - → Very low leakage current ~ few pA
- Low dielectric constant (5.7)
 - \rightarrow Low capacitance \rightarrow Low noise
- High displacement energy (43 eV/atom)
 → Radiation hard → No replacement
- High mobility (~2000 cm²/Vs)
 - \rightarrow Fast signals
 - \rightarrow High collision rate
- Very wide sensitivity range
 → Single MIP to 1 THz tested
- Wide operational temperature range
- No cooling (no "thermal run-away")

08.12.2011

Cons:

High E_{pair-creation} (13.5 eV) → Less signal, but S2N-ratio comparable to Si

- Rather high costs
- Not as well understood as Si
 → More R&D efforts needed

Production of CVD diamonds

Microwave growth reactor

- Diamond synthesis from plasma
- Material copies substrate

Surface image of pCVD

pCVD diamond wafer

Dots are on 1 cm grid

Common circuit for Diamond Detectors

• Diamond is solid state ionization chamber

Courtesy CIVIDEC

ÉRN

Modes of Operation

Counting Mode
 Calorimetric Mode

pCVD Diamond:

scCVD Diamond:

very short signal ~2ns FWHM @ 1V/um

optimal double pulse resolution charges lost at trapping centres short signal ~5ns FWHM @ 1V/um

optimal Signal-to-Noise ratio lower trapping centre concentration

 $CCD = d * Q_{sig}/Q_0$

08.12.2011

5th Annual Workshop – Hendrik Jansen

Time resolution

Beam structure

Phase measurement

08.12.2011

5th Annual Workshop – Hendrik Jansen

ÊR

Energy resolution of scCVDs

CERN

Distribution of measured total signal charge

Energy resolution of pCVDs

Distribution of measured total signal charge

Radiation hardness

 Samples radiated up to 2.25e17 cm⁻² with 500 MeV protons

Performance of Diamond Detectors

08.12.2011 5th Annual Workshop – Hendrik Jansen

The CMS BCM1F

Tasks and requirements :

Monitoring and protection

Design:

- MIP detection, low power, radiation hard
- Feed back BGND levels to LHC
- Instantaneous luminosity to CMS

Pre-amplifier

CERN

The CMS BCM

- Measure halo and collision rate
- Measure instantaneous luminosity
- Studies ongoing to extract bunch-by-bunch lumi

Courtesy E. Castro

Similar location, but pCVDs, ultra-fast electronics

LHC Diamond BLM

- Record "Post Mortem" data after beam dump (among other functionalities)
- 6/10 installed

08.12.2011

LHC Diamond BLM

Unidentified Falling Objects (UFOs) seen from time to time

Create huge losses -> Beam dump

• Fast Diamond BLMs allow closer look at UFOs:

CERN

Page 20

08.12.2011 5th Annual Workshop – Hendrik Jansen

Closer look at UFOs

Closer look at UFOs

08.12.2011

Future Diamond Detectors

08.12.2011 5th Annual Workshop – Hendrik Jansen

ATLAS DBM

<u>Purpose</u>

- Bunch-by-bunch luminosity monitor
 - pixelized and larger acceptance than BCM
 - aim < 1% per BC per LB
- Bunch-by-bunch beam spot monitor
 - need telescope structure for tracking
 - distinguish halo and collision events

<u>Design</u>

- 4 telescopes of 3 sensors per side
 -> 24 modules
- At |η| ≈ 3.3
- Use pixel support structure

08.12.2011

Use IBL read-out chip

Location of DBM

ATLAS DBM

DBM Specs

Property	Specification
Sensor size pixel size channels	21 mm x 18 mm 250 um x 50 um 336 x 80 = 26880
Sensor thickness	400 - 500 um
Min. CCD	200 um -> 7200 e-
Min. CCD after 2e15 cm ⁻²	100 um -> 3600 e-
Max operation voltage	1000 V
Read-out chip	FE-I4

08.12.2011

5th Annual Workshop – Hendrik Jansen

CMS Pixel Lumi Telescope (PLT)

- Dedicated, stand-alone luminosity monitor
- Eight 3-plane telescopes each end of CMS
- 1.6° pointing angle r = 4.8 cm, z = 175 cm
- Diamond pixel sensors pixel area: 3.9 mm x 3.9 mm
- Count 3-fold coincidences fast-or signals (40 MHz)
- Full pixel readout pixel address, pulse height (1 kHz)
- Stable 1% precision on bunch-by-bunch relative luminosity

Courtesy S. Schnetzer

PLT Status

- Two full cassettes (each 4 telescopes) under continuous, stable operation at CERN
- Full system set up
- Near flawless operation
- Both studies in Oct test-beam
- Installation of 2 cassettes during winter shut-down behind HF, z = 15 m

CVD Diamond in HEP

R&D efforts

08.12.2011 5th Annual Workshop – Hendrik Jansen

Page 31

Cryogenic BLM in Triplet Magnets

- Place BLMs as close to the beam as possible
 - \rightarrow Better separation of collision debris and halo/losses
 - \rightarrow Detector operation at 1.9 K, within the cold mass
- Choose detector material

 → Candidates are: CVD diamond, silicon, liquid He
- Diamonds not tested yet at ultra-cold temperatures
 → Interesting!

- Characterize scCVD diamonds at cryogenic temperatures using liquid He cooling
 - → Measure temperature dependence of diamond properties

Details of Measuring Set-up

- The Transient-Current Technique (TCT) with α particles:
 - \rightarrow measure the transient current
 - 1) α particles impinge on top side
 - 2) Create eh-pairs close to electrode
 - 3) Electric field separates charges
 - 4) Drifting charges induce current
 - \rightarrow Pos. (neg.) bias \rightarrow Measure e⁻ (h⁺)
 - \rightarrow Use ultra-fast 2 GHz, 40 dB, 200 ps rise time current amplifier
 - \rightarrow Use broad-band 3 GHz scope
 - \rightarrow Use RF components

08.12.2011

Details of Measuring Set-up

• SETTINGS:

- → TCT in vacuum
- → Temp: 4.5 K 300 K, bias \leq 1000 V
- → Read-out from HV-side
- → Use collimator (avoid edge-effects)

TCT and the Plasma Effect

Plasma Effect at 295 K

TCT Hole Pulses

ĖR

Hole Mobility and Velocity

- Mobility μ_h and avg. drift velocity $\langle v_{drift} \rangle$ at RT as expected
- μ_h increases down to 67 K (→ <v_{drift}> increases as well)
 → no onset of impurity scattering
- $v_{sat} \sim constant$ with temperature

Beam tests

08.12.2011 5th Annual Workshop – Hendrik Jansen

Page 40

Set-up

- PS Beam on Cryostat (24 GeV protons)
- Diamond cooled down to LiHe temperature
- AC-coupled to 2GHz pre-amplifier

Courtesy C. Kurfuerst

TCT signals with PS protons

Courtesy C. Kurfuerst

TCT signals with PS protons

Neutron measurements

08.12.2011 5th Annual Workshop – Hendrik Jansen

Neutron Flux at ITER

Measure 14 MeV neutron flux

Neutron Beam measurements

-> measure neutron flux online and give feed-back to ITER machine

 $\Phi = \frac{Counts}{\varepsilon \eta Y(E, \sigma)}$ Courtesy C. Weiss

08.12.2011

5th Annual Workshop – Hendrik Jansen

Diamond ...

- ... is in use as radiation monitors for ATLAS, CMS, LHC.
- ... is very promising candidate for future detectors.
- ... is radiation-hard, fast, low noise, high sensibility range.
- ... doesn't need cooling.
- ... needs more research: impurities composition energy levels of traps high/low T features contacts edge effects etc
- ... brings researchers together: CERN RD42, GSI Carat. Diamond communities are growing!

Back-up

08.12.2011 5th Annual Workshop – Hendrik Jansen

Signal range

Reaction Yield:
$$Y(E_n) = (1 - e^{-n\sigma_t(E_n)}) \frac{\sigma_\alpha(E_n)}{\sigma_t(E_n)}$$

$$Y(E_n) = \frac{C(E_n)}{\varepsilon(E_n)\Phi(E_n)}$$