

Model independent search for new physics (MUSiC) in CMS

Mark Olschewski, Michael Brodski, Thomas Hebbeker, Arnd Meyer, Paul Papacz, Holger Pieta

Motivation for a model unspecific search

- Huge variety of different, yet untested models.
- Each has its own motivation.
- A complementary approach to testing specific models is to scan the data for deviations from the SM prediction.

MUSiC workflow

- Sort events into classes depending on their physics object content: μ , e, γ , jet, MFT.
- Create kinematic distributions for each class: M_{inv} , $\sum p_T$, MET.
- Do the same for **Standard Model** Monte Carlo.
- Apply generic search algorithm to find most significant deviation.

P-value

$$p = \sum_{i=n_{\text{data}}}^{\infty} A \cdot \int_{0}^{\infty} dx \exp\left(\frac{-(b-x)^{2}}{2\sigma_{b}^{2}}\right) \cdot \frac{e^{-x}x^{i}}{i!}$$

in case of $n_{\text{data}} \geq b$.

- Number of data events n, Monte Carlo expectation b, uncertainty σ_b .
- p = probability to see n events or more, when Monte Carlo expectation is b.
- Region of Interest: Connected bin region with the smallest p-value.
- Also sensitive to deficits.

Look Elsewhere Effect

number of pseudo experiments

When calculating the significance of a deviation, the number of different bin regions as well as the correlation between them have to be taken into account.

Selection criteria for 2011 analysis

Event selection

Require at least one **muon** with $p_T > 32 \,\text{GeV}$ or one **electron** with $p_T > 82 \,\text{GeV}$ (above single lepton trigger thresholds).

Object selection

Object	p_T^{min}/GeV	$ \eta ^{\sf max}$
Muon	18	2.1
Electron	25	2.5
Photon	25	1.442
Jet	50	2.5
MET	30	

Additional object dependent

quality criteria are applied.

Luminosity

 4.6 fb^{-1}

Monte Carlo samples

80 different samples from various generators.

- W boson
- Drell-Yan
- tt
- Multi-boson
- _ γ
- Multi-jet
- Photon+jets

Uncertainties – Work in progress

Contribution	Value	Remarks
MC statistics	various	sample dependent
Luminosity	4.5%	
PDF	various	PDF reweighting method
jet energy correction	3% to 5%	$p_{\mathcal{T}}$ dependent
reconstruction efficiencies	1% to $4%$	object dependent
misreconstruction probabilities	30% to 100%	object dependent
W-boson cross sec.	5%	NNLO
DY cross sec.	5%	NNLO
tt cross sec.	10%	NNLL
Multi-boson cross sec.	10%	LO/NLO
↑ cross sec.	30%	measured
QCD-multijet cross sec.	50%	LO
photon+jets cross sec.	50%	LO

Drell-Yan dominated distribution

Overall good agreement in 2010 data.

W dominated distribution

Overall good agreement in 2010 data. Some MC samples have small statistics.

$t\bar{t}$ dominated distribution

Deficits also detectable by MUSiC.

Quadruple-lepton distribution

4μ event display

Multiple object distribution

Samples with small cross sections become increasingly important in 2011.

2010 \tilde{p} distribution

Last year's data has shown an overall good agreement with expectation.

Summary

MUSiC - Model Unspecific Search in CMS

- Looks for deviations in a large number of classes.
- Complementary to dedicated analyses.
- Good agreement between data and Monte Carlo in 2010.

2011 data

- Analysis is underway.
- Challenging conditions due to higher (instantaneous) luminosity.
 - Handling for higher pile-up needed.
 - MC prediction for (very) rare SM processes becomes increasingly important in certain final states.