About Interpretation of CMS Search Results

Felix Frensch

KIT - Institut für Experimentelle Kernphysik 5th Annual Workshop of the Helmholtz Alliance "Physics at the Terascale", 7-9 Dec 2011, Bonn (Germany)

8.12.2011

"Statistics is HARD"

- Bob Cousins

Outlook

- Introduction to the problem counting experiment
- Different approaches
 - Treatment of systematic uncertainties
 - Upper limit calculation
- ► The *CL_s* technique motivation
- Expected upper limit calculation
- Upper limits observed and expected interpretations on an example

Scope of work - Counting experiment

The probability to find n events follows a **Possion distribution**.

 \rightarrow Likelihood function for background model:

$$P(n|b(\vec{\nu})) = Poisson(n|b(\vec{\nu})) \cdot \pi(\vec{\nu})$$

→ Likelihood function for signal + background model:

$$P(n|s(\vec{\nu}) + b(\vec{\nu})) = Poisson(n|s(\vec{\nu}) + b(\vec{\nu})) \cdot \pi(\vec{\nu})$$

- n is the observed number of events
- ightharpoonup are systematic uncertainties, so called nuisance parameters
- ightharpoonup are the distributions for the nuisance parameters $\vec{\nu}$
- ► *s/b* is the "true"/predicted number of signal/background events, both dependent on nuisance parameters

TASK: Calculating the upper limit on the signal s_{UL}

Bayesian way

1 Use Bayesian-Theorem to calculate the posterior $P(s(\vec{\nu}) + b(\vec{\nu})|n)$:

$$P(s(\vec{\nu}) + b(\vec{\nu})|n) = \frac{P(n|s(\vec{\nu}) + b(\vec{\nu}))\delta(s)\delta(b)\delta(\nu)}{\iiint P(n|s(\vec{\nu}) + b(\vec{\nu}))\delta(s)\delta(b)\delta(\nu) \ db \ ds \ d\nu}$$

- \bullet Choice of the priors δ is up to the "degree of believe" or to other informations about the parameters
 - ⇒ Main concern of using Bayesian
- **2** Marginalizing the background b and other nuisance parameters \vec{v} :

$$P(s|n) = \iint P(s(\vec{\nu}) + b(\vec{\nu})|n) \ db \ d\nu$$

3 Extract the upper limit s_{UL} (for 95% Confidence Level):

$$1 - \alpha = \int_{-\infty}^{s_{UL}} P(s|n) \ ds = 0.95$$

Hybrid and frequentist ways - Choice of test statistic

LEP and TEV style

Starting from likelihood ratios:

$$q = -2ln\left(\frac{P(n|s+b)}{P(n|b)}\right)$$

- In case of no nuisance: The Neyman-Pearson Lemma proofs this one to be to be the best test statistic
- Details in the Backup

LHC style

Using the Profile Likelihood

$$q = -2ln\left(\frac{P(n|s+\hat{b})}{P(n|\hat{s}+\hat{b})}\right)$$

- b in the numerator maximizes P for specific s
- \$\hat{s}\$ and \$\hat{b}\$ maximize the denominator for all \$s\$
- Allows for approximation using
 Wilks and Wald theorems and
 therefore for much faster computing
- Possibility for pure Frequentist or Hybrid treatment of parameters

- Definition of Hybrid:
 - ▶ Bayesian treatment of the nuisance parameters
 - Frequentist treatment of parameter of interest s
- 1 Decide what test statistic q to use (LEP, TEV or LHC style)
- 2 Construct it, here using Profile Likelihood and pure frequentist treatment of parameters

$$q = -2ln\left(\frac{P(n|s(\hat{\nu}) + \hat{b}(\hat{\nu}))}{P(n|\hat{s}(\hat{\nu}) + \hat{b}(\hat{\nu}))}\right)$$

- \hat{b} and \hat{v} in the numerator are maximizing P for specific s
- \hat{s} , \hat{b} and $\hat{\nu}$ are maximizing the denominator for all s
- This is called "profiling"; nuisance parameters effectively eliminated.
- 3 Build probability density function for background f(q|b) and signal + background f(q|s+b) by generating Monte Carlo pseudo-data

- **4** Get the observed value for the test statistic q_{obs} for given s
- 5 Decide which technique to use for calculating upper limit, here using CL_{s+b} :

$$p_{s+b} = P(q \ge q_{obs}|s+b) = \int_{q_{obs}}^{\infty} f(q|s+b) dq$$

6 Signal + background model is excluded with 95% Confidence Level, if:

$$p_{s+b} < \alpha = 0.05$$

7 Upper limit s_{UL}:

$$max(p_{s+b}) \leq 0.05$$

CL_s

- **Example:** b = 4; n = 0;
- ▶ **Statistical meaning:** Observation of a downward fluctuation of the background *n* < *b*
- Problem: Find a reasonable upper limit
- Risk: Exclusion of the s + b model, although no sensitivity for it!
 - ► CL_{s+b} upper limit: $s_{UL} = -0.25 \Rightarrow \text{even } s = 0$ is excluded!
- ▶ **Solution:** Putting the sensitivity into the exclusion procedure
- The CL_s method defines a signal model as excluded, if one finds:

$$CL_s = \frac{p_{s+b}}{p_b} < \alpha = 5\%$$

 $ightharpoonup CL_s$ upper limit: $s_{III} = 3.23$

CL_s - conclusions

- ► Saved from spurious exclusion
- ► Therefore "worse" limits, because of overcoverage (confidence of excluding > 95%)
 - ⇒ "Worse" limits in the sense of physically better defendable!!!

• CL_s is a conservative, well-working method!

Expected limit

- 1 Generate a large number of MC toys for the background only hypothesis; $n = Poisson(b(\vec{\nu}))$
- Treating of nuisance parameters, when running MC toys for b-only model is nontrivial:
 - B Bayesian approaches use predefined distribution
 - F **Frequentist** approaches extract nuisances central values from fitting *b*-only model to data
 - F effectively measuring systematics in data
 - F making the expected limit biased towards the measured one

- 2 Follow the selected exclusion procedure using the toys as real data
- 3 For each generated pseudo-data samples find a certain SUL

(Left side) example:

- \triangleright s=1
 - b = 5
- no systematic errors

- 4 Plot the cumulative probability
- **5** Find the values of s_{UL} where the probability crosses
 - ► 50% (median expected) quantile
 - ▶ $16\% / 84\% \ (\pm 1\sigma$ -band; 68%) quantile
 - 2.5% / 97.5% ($\pm 2\sigma$ -band; 95%) quantile

- \Rightarrow median expected limit: $s_{UL} = 6.3$
- $\Rightarrow \pm 1\sigma$ -band: $s_{UL} \in [4.7, 8.4]$
- $\Rightarrow \pm 2\sigma$ -band: $s_{UL} \in [3.5, 12.0]$
- ⇒ reflects detector sensitivity to the given signature
- $\Rightarrow \pm 1\sigma / \pm 2\sigma$ -bands shows consistensy between data and expectation

Example - different approaches

- This is a pure academically study and NOT meant as official result!
- Crabbed b and n from CMS PAS SUS-11-010
- ▶ Made up s and \vec{v} for illustration propose
- ▶ 1.4 ± 0.7 background events predicted; 0 observed
- ▶ signal s different in each point using the CMSSM SUSY model

On the right side the nuisance parameter $\vec{\nu}$ are specified.

uncertainty	distribution	value	
luminosity	logNormal	6%	
signal	logNormal	12%	
background	logNormal	50%	
jet energy scale	logNormal	7.5%	
HT Trigger	logNormal	5%	
lepton trigger	logNormal	5%	
lepton efficiency	logNormal	3%_	

Calculation of the upper limits and extrapolation to the CMSSM SUSY model:

Method	SUL	
Bayesian	3.16	
LHC CL _{s+b} freq	1.46	
LHC CL_{s+b} hybrid	1.71	
TEV CL _{s+b}	1.66	
LEP CL _{s+b}	1.66	
LHC CL _s freq	3.24	
LHC <i>CL_s</i> hybrid	2.91	
TEV CL _s	3.05	
LEP CL _s	3.05	

- $ightharpoonup CL_{s+b}$ excludes more than CL_s due to downward fluctuation
- ► CL_s agrees good with Bayesian

Adding expected bands for LHC CLs

2D plot - **CMSSM SUSY points** $m_0: m_{1/2}: A_0: tan(\beta): sign(\mu)$ under the observed line are excluded on 95% Confidence Level

- ▶ Observed limit better than expected limit
 ⇒ Maximum downward fluctuation has been observed 0 = n < b
- The observation is within 1σ (68%) of the background prediction
- The upper limits of the ±1σ / ±2σ-bands don't have to be equal here because of the relative small b. For larger statistics this would change.

Higgs Exclusion Plot

1D plot - **SM-Higgs mass** under the red horizontal line are excluded on 95% Confidence Level

- At roughly 119 GeV:
 2σ difference from the expected limit and above the red horizontal line possible excess
- At roughly 140-150 GeV Higgs mass: $> 2\sigma$ deviation from the expected limit, still SM-Higgs is excluded there, but there could be something different
- Consider statistical fluctuations as possible explanation for deviations

Conclusion

- Statistic approaches are nontrivial
- ▶ There are different ways refering to the same problem
- ▶ Treating systematic uncertanties is ambiguous
- CL_s is used as a reference in HEP
- Expected limit shows the consistency between data and background only hypothesis
- Exclusion plots deliver many informations, but needs right interpretation

Backup - choice of nuisance paramter distributions

- General way is to use the known/measured distribution of the nuisance paramter, but often one only knows a pair of numbers: mean and width
- Lognormal or Gamma are recommanded feels more naturally for positive nuisance parameters
- ► Gaussian truncated to 0 or higher (for positive nuisance parameters) could lead to issues (improper posterior) http://www.physics.ucla.edu/~cousins/stats/cousins_lognormal_prior.pdf

Backup - choice of test statistics - LEP

Nuisance Parameters are treated in a Bayesian way, but do not enter the test statistic

$$q = -2ln\left(\frac{P(n|s,b)}{P(n|b)}\right)$$

If systematics occur: using to the Bayesian posterior

$$\rho(\nu|\tilde{\nu}) \sim p(\tilde{\nu}|\nu) \cdot \delta(\nu)$$

to modify the $s(\nu)$ and $b(\nu)$ distributions before tossing pseudo MC by drawing random numbers from $\rho(\nu|\tilde{\nu})$

Backup - choice of test statistics - TEV

Nuisance parameters are treated in a Bayesian way, tossing of pseudo data remains the same, but nuisance parameters additionally enter the test stastic

$$q = -2ln\left(\frac{P(n|s,\hat{b},\hat{v})}{P(n|\hat{b},\hat{v})}\right)$$

▶ If systematics occur: using the Bayesian posterior

$$\rho(\nu|\tilde{\nu}) \sim p(\tilde{\nu}|\nu) \cdot \delta(\nu)$$

to modify the $s(\nu)$ and $b(\nu)$ distributions before tossing pseudo MC data by drawing random numbers from $\rho(\nu|\tilde{\nu})$

Backup - choice of test statistics - LHC

Nuisance Parameters are treated in a frequentist way and enter the test stastic

$$q = -2ln\left(\frac{P(n|s,\hat{b},\hat{\nu})}{P(n|\hat{s},\hat{b},\hat{\nu})}\right)$$

- If systematics occur: using the frequentist "measurement" $p(\tilde{\nu}|\nu)$ to modify the $s(\nu)$ and $b(\nu)$ distributions
- ▶ Finding $\hat{\nu}_b$ and $\hat{\nu}_{s+b}$ which describe the observed data in the best way. Then generating pseudo MC data for $f(q|b,\hat{\nu}_b)$ and $f(q|s+b,\hat{\nu}_{s+b})$
- ▶ Wilks theorem could be used now: In the asymptotic regime q is expected to have half a χ^2 distribution with one degree of freedom (for s+b experiments), this is technical much faster, because no need to generate MC

Backup - why elimating systematics before building pdf's

▶ With nuisance parameters: p_{s+b} -value (p_b -value analogous):

$$p_{s+b} = \int_{q_{obs}}^{\infty} f(q|s+b,\nu) dq$$

- In general (excluding the case of profile likelihood, where ν are effectively eliminated), this could lead to value of s+b which would be excluded depending on the value ν **So when to exclude and when not?**
- Compromises are frequentist or Bayesian treatments of the nuisance parameters:
 - Frequentist approach is to reject s+b model if $p_{s+b}<\alpha$ for the ν that best fits the data
 - ightharpoonup Bayesian way of marginalizing the nuisance parameters effectively builds the uncertainty due to ν into the model

Backup - Expected Limit - Comparision

Remember: 1.4 ± 0.7 background events predicted \rightarrow 0 observed

Method	SUL	-2σ	-1σ	median	$+1\sigma$	$+2\sigma$
Bayesian	3.16	3.16	3.16	4.26	6.95	9.82
LHC CL _s freq	3.24	3.24	3.24	3.44	4.90	7.79
LHC <i>CL_s</i> hybrid	2.91	2.84	2.84	3.89	6.61	9.51
TEV CLs	3.05	3.14	3.14	4.11	6.75	9.51
LEP CL _s	3.05	3.14	3.14	4.11	6.75	9.51

Backup - Official CMS results

Backup - Power Constrained Limits (PCL)

- ▶ Statistically no solid foundation for interpreting CL_s , which is a ratio of p-values, as a p-value
- Coverage probability is greater than 95% (remember it's pretty conservative) by an amount which is in general not reported
- ⇒ In 2010 by Cowan, Cranmer, Gross and Vitells propose an alternative method: Power-Constraint Limits (PCL)
 - Adresses the same problem of spurious exclusion

A value of *s* is excluded, if both of the following conditions are fullfied:

- $ightharpoonup p_{s+b} < \alpha$
- ▶ sufficient sensitivity: $M_0(s) \ge M_{min}$, with $M_0(s) = P(p_b < \alpha|b)$ and $M_{min} = 0.5(0.16)$

- ▶ From $M_0(s) = P(p_b < \alpha|b) = 0.5 \rightarrow \text{extract } s_{UL,min}$
- ▶ With CL_{s+b} technique \rightarrow get $s_{UL,CL_{s+b}}$
- ⇒ Power-Constrained Limit calculated via:

$$s_{UL} = max(s_{UL,min}, s_{UL,CL_{s+b}})$$

The converage probability and upper limits for a Gaussian measurement are showed in following plots:

Sources

- http://mschen.web.cern.ch/mschen/Lands/ LandS Code - tool for statistic calculations
- http://www.physics.ucla.edu/~cousins/stats/ cousins_lognormal_prior.pdf - distribution study of nuisance paramters
- http:
 //www.physics.ucla.edu/~cousins/stats/cousins_
 bounded_gaussian_virtual_talk_12sep2011.pdf Bob
 Cousins virtual talk
- http://www.pp.rhul.ac.uk/~cowan/stat_desy.html -Glen Cowan statistic lectures

