Neutrino Mass from Higher than d = 5 Effective Operators in SUSY, and its Test at the LHC

M. B. Krauss, T. Ota, W. Porod, W. Winter, Phys. Rev. D (in press), (2011), arXiv:1109.4636

Martin B. Krauss

Universität Würzburg Institut für Theoretische Physik und Astrophysik

December 8, 2011

Motivation

- Standard model has been tested very successfully
 BUT it has some limitations (Hierarchy problem, unification of gauge couplings, neutrino masses, ...)
 → Hints for physics beyond the SM
- (Type I) See-saw mechanism generates small m_{\nu} naturally
 BUT requires new physics at GUT scale (not testable!)
- Extensions of the see-saw → new physics at TeV scale (Radiative mass generation, inverse see-saw, higher dimensional effective operators,...)
- New particles with phenomenology at LHC 2/16

Introduction to Effective Operators

BSM physics can be parameterized as tower of effective operators

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{eff}}^{d=5} + \mathcal{L}_{\mathrm{eff}}^{d=6} + \cdots, \quad \mathrm{with} \quad \mathcal{L}_{\mathrm{eff}}^{d} \propto \frac{1}{\Lambda_{\mathrm{NP}}^{d-4}} \mathcal{O}^{d}$$

suppressed by powers of the new physics scale $\Lambda_{\mathrm{NP}}^{d-4}$

- Describing low energy effects of a fundamental theory at high energies
- Obtained by integrating out heavy fields
- Good approximation below heavy mass scale

Examples

Fermi theory

Seesaw mechanism

. . . .

3 / 16

Introduction to Effective Operators

BSM physics can be parameterized as tower of effective operators

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm eff}^{d=5} + \mathcal{L}_{\rm eff}^{d=6} + \cdots, \quad {\rm with} \quad \mathcal{L}_{\rm eff}^d \propto \frac{1}{\Lambda_{\rm NP}^{d-4}} \, \mathcal{O}^d$$

suppressed by powers of the new physics scale $\Lambda_{\mathrm{NP}}^{d-4}$

- Describing low energy effects of a fundamental theory at high energies
- Obtained by integrating out heavy fields
- Good approximation below heavy mass scale

- At d=5 we haven the Weinberg operator $\mathcal{O}_W = (\overline{L^c}i\tau^2 H)(Hi\tau^2 L)$
- Obtained from see-saw after integrating out heavy mediators

• After EWSB $\frac{Y_N^2}{m_N} \langle H \rangle^2 \bar{\nu}^c \nu \rightarrow$ generates neutrino mass $m_{\nu}^{\text{eff}} \propto \frac{v^2}{\Lambda}$, with $\Lambda = m_N$

Higher-Dimensional Effective Operators

Possible in theories with two Higgs doublets (THDM, MSSM, ...)

- Neutrino mass is generated by higher dimensional operators
- New physics scale can be at lower energy
- Lower dimensional operators must be forbidden

Higher-Dimensional Effective Operators II

Additional operators are possible with an additional scalar that has a VEV (like in the NMSSM) $% \left(\frac{1}{2}\right) =0$

Possible Effective Operators in the NMSSM

	Op.#	Effective interaction	Charge	Same as
<i>d</i> = 5	1	LLH _u H _u	$2q_{L} + 2q_{H_{u}}$	
d = 6	2	LLH _u H _u S	$2q_L + q_{H_u} - q_{H_d}$	
d = 7	3	$LLH_uH_uH_dH_u$	$2q_L + 3q_{H_u} + q_{H_d}$	
	4	LLH _u H _u SS	$2q_L - 2q_{H_d}$	
<i>d</i> = 8	5	LLH _u H _u H _d H _u S	$2q_L + 2q_{H_u}$	#1
	6	LLH _u H _u SSS	$2q_L + 2q_{H_u}$	#1
<i>d</i> = 9	7	LLH _u H _u H _d H _u H _d H _u	$2q_L + 4q_{H_u} + 2q_{H_d}$	
	8	$LLH_uH_uH_dH_uSS$	$2q_L + q_{H_u} - q_{H_d}$	#2
	9	LLH _u H _u SSSS	$2q_L + q_{H_u} - q_{H_d}$	#2

Table: Effective operators generating neutrino mass in the NMSSM up to d = 9.

Characteristics

- More constraints in SUSY than in THDM (c.f. Bonnet, Hernandez, Ota, Winter (2009); arXiv:0907.3143)
- Condition for discrete charges of fields from neutrality of superpotential
- Rules out some operators as leading contribution to neutrino mass
- Several possible fundamental theories can lead to the same effective operator at low energies

Possible Decompositions for d = 7

- Same external fields, different mediators
- Scalar mediators potentially problematic: VEV of scalar → induces d = 6 operator

A d = 7 Example

<u>A d = 7 example</u>

Superpotential

$$W = W_{ ext{NMSSM}} + Y_N \hat{N} \hat{L} \cdot \hat{H}_u - \kappa_1 \hat{N}' \hat{\xi} \cdot \hat{H}_d + \kappa_2 \hat{N}' \hat{\xi}' \cdot \hat{H}_u + m_N \hat{N} \hat{N}' + m_{\xi} \hat{\xi} \cdot \hat{\xi}'$$

New fields:

- SM singlets N, N'
- SU(2)_L doublets ξ , ξ'

UNIVERSITÄT WÜRZBURG

Mass Matrix

• In the basis $f^0 = (\nu, N, N', \xi^0, {\xi'}^0)$ we obtain the mass matrix

$$M_{f}^{0} = \begin{pmatrix} 0 & Y_{N}v_{u} & 0 & 0 & 0 \\ Y_{N}v_{u} & 0 & m_{N} & 0 & 0 \\ 0 & m_{N} & 0 & \kappa_{1}v_{d} & \kappa_{2}v_{u} \\ 0 & 0 & \kappa_{1}v_{d} & 0 & m_{\xi} \\ 0 & 0 & \kappa_{2}v_{u} & m_{\xi} & 0 \end{pmatrix}$$

By integrating out the heavy fields we obtain an effective mass matrix for the three SM neutrinos at low energies

ightarrow Propagators of the mediator fields are expanded in 1/M

$$\frac{1}{\not p-M}\approx -\frac{1}{M}+\cdots$$

Integrating out the heavy fields

$$m_
u = v_u^3 v_d Y_N^2 rac{\kappa_1 \kappa_2}{m_\xi m_N^2}$$

Masses at TeV scale for couplings $O(10^{-3})$

Julius-Maximilians-

Flavor Structure

 Flavor structure of the effective operator has to match the neutrino mass matrix

$$M_{\alpha\beta} = v_u^3 v_d(Y_N)_{\alpha i} (M_N^{-1})_{ij} \epsilon_{jk} (M_N^{-1,\mathsf{T}})_{kl} (Y_N^{\mathsf{T}})_{l\beta} ,$$

where

$$\epsilon_{jk} = \frac{1}{m_{\xi}} \left((\kappa_1)_{jm} (\kappa_2^{\mathsf{T}})_{mk} + (\kappa_2)_{jm} (\kappa_1^{\mathsf{T}})_{mk} \right) \,.$$

Can be realized with N fields as flavor pairs and the ξ-fields as flavor singlets.
 A possible choice of parameters fulfilling these conditions is

$$Y_{N} = y_{N} \begin{pmatrix} \frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \kappa_{1} = k_{1} \begin{pmatrix} -1\\ 1 \end{pmatrix}, \quad \kappa_{2} = k_{2} \begin{pmatrix} 1\\ 1 \end{pmatrix}, \quad M_{N} = m_{N} \begin{pmatrix} 1 & 0\\ 0 & \rho \end{pmatrix}$$

where $ho = \sqrt{m_2/m_3}$

• The overall mass scale requires $v_u^3 v_d y_N^2 k_1 k_2 / (m_N^2 m_\xi) \stackrel{!}{=} m_2$

12 / 16

lius-Maximilians

UNIVERSITÄT WÜRZBURG

> Flavor structure of the effective operator has to match the neutrino mass matrix

$$M_{\alpha\beta} = v_u^3 v_d(Y_N)_{\alpha i} (M_N^{-1})_{ij} \epsilon_{jk} (M_N^{-1,\mathsf{T}})_{kl} (Y_N^{\mathsf{T}})_{l\beta} ,$$

where

$$\epsilon_{jk} = rac{1}{m_{\xi}} \left((\kappa_1)_{jm} (\kappa_2^{\mathsf{T}})_{mk} + (\kappa_2)_{jm} (\kappa_1^{\mathsf{T}})_{mk}
ight) \,.$$

Can be realized with N fields as flavor pairs and the ξ-fields as flavor singlets.
A possible choice of parameters fulfilling these conditions is

$$Y_{N} = y_{N} \begin{pmatrix} \frac{1}{\sqrt{3}} & 0\\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \kappa_{1} = k_{1} \begin{pmatrix} -1\\ 1 \end{pmatrix}, \quad \kappa_{2} = k_{2} \begin{pmatrix} 1\\ 1 \end{pmatrix}, \quad M_{N} = m_{N} \begin{pmatrix} 1 & 0\\ 0 & \rho \end{pmatrix}$$

where $ho = \sqrt{m_2/m_3}$

A d = 7 Example

• The overall mass scale requires $v_u^3 v_d y_N^2 k_1 k_2 / (m_N^2 m_\xi) \stackrel{!}{=} m_2$

12 / 16

Phenomenology

- Can the new particles be produced?
 - $\hfill\square$ Rare production of \hat{N} and \hat{N}' due to small Yukawa couplings
 - □ SU(2)_L doublets can be produced in Drell-Yan processes ($\sigma \sim 10^2$ fb) (similarly to charginos and neutralinos)

Phenomenology II

- Possible decays
 - $\begin{array}{l} \square \ \xi^+ \to W^+ \nu_k \ , \ H^+ \nu_k \\ \square \ n_i \to W^{\pm} l_j^{\mp} \ , \ H^{\pm} l_j^{\mp} \\ \square \ n_i \to Z \nu_k \ , \ h^0 \nu_k \ , \ H^0 \nu_k \ , \ A^0 \nu_k \\ \end{array}$ Small decay widths ($\Gamma \sim 10^{-6} \dots 1 \text{ keV}$) \Rightarrow decay lengths of $10^{-6} \dots 1 \text{ mm}$ at LHC (displaced vertices)

Particle	Γ[keV]	$BR(W^{\pm}e^{\mp})$	$BR(W^{\pm}\mu^{\mp})$	$BR(W^{\pm}\tau^{\mp})$	$BR(Z\nu)$	$BR(h^0\nu)$
n4	$2.3 \cdot 10^{-5}$	$6.6 \cdot 10^{-3}$	$7.0 \cdot 10^{-2}$	0.18	0.36	0.38
<i>n</i> 5	$1.9\cdot 10^{-5}$	$1.2\cdot10^{-2}$	$0.41 \cdot 10^{-2}$	0.18	0.42	0.34
n ₆	1.2	$1.2\cdot10^{-11}$	0.21	0.21	0.21	0.37
n ₇	1.2	$1.2\cdot10^{-11}$	0.21	0.21	0.21	0.37
n ₈	2.9	0.14	0.14	0.14	0.20	0.38
<i>n</i> 9	2.9	0.14	0.14	0.14	0.20	0.38

Table: Total decay widths of the neutral mass eigenstates and branching ratios into the possible final states (where ν is the sum over the three light neutrino mass eigenstates).

A d = 7 Example

Phenomenology III

- Tests of the Majorana nature of the leptons? → Processes with lepton number violation by two units as
 - $\begin{array}{c} \square \quad u\overline{d} \rightarrow l^+ l'^+ W^- \\ \square \quad q\overline{q} \rightarrow l^+ l'^+ W^- W^- \\ \square \quad ud \rightarrow l^+ l'^+ W^- W^+ W^+ \\ \square \quad \dots \end{array}$
- Heavy Majorana neutrinos form pseudo-Dirac particles
- Lepton number violating processes expected to be suppressed
- Numerical analysis with WHIZARD
- LNC cross-section for $pp \rightarrow W\ell\ell$ of $\mathcal{O}(10^2)$ fb LNV processes supressed due to pseudo-Dirac pairs ($< \mathcal{O}(10^{-9})$ fb)
- For $pp \rightarrow W\ell W\ell$ LNV processes larger than naively expected ($\mathcal{O}(10^{-2})$ fb)

Conclusions

- See-saw extensions from higher than d=5 effective operators lower new physics to TeV scale
- In SUSY framework more constraints than in THDM
- Integrating out heavy fields reproduces neutrino masses and mixing
- Possible implementation of flavor structure has been presented
- Phenomenological implications at LHC have been discussed
 - Displaced vertices can be used to identify particles
 - Tests of Majorana nature

Backup-Slides

Adding Flavor

Julius-Maximilians

- Experimental results \rightarrow three distinct neutrino mass eigenstates \Rightarrow At least two neutrinos with **non zero mass** required
- In the most simple case one neutrino mass can be set to zero
- Tri-Bimaximal mixing is an approximation in good accordance with experimental observation

$$U = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

In the case of a normal hierarchy $(m_1 < m_2 < m_3)$ one obtains a neutrino mass matrix $M_{ij} = \text{diag}(0, m_2, m_3)$, so that

$$M_{\alpha\beta} = U_{\alpha i} M_{ij} U_{j\beta}^{\mathsf{T}} = \begin{pmatrix} \frac{m_2}{3} & \frac{m_2}{3} & \frac{m_2}{3} \\ \frac{m_2}{3} & \frac{m_2}{3} + \frac{m_3}{2} & \frac{m_2}{3} - \frac{m_3}{2} \\ \frac{m_2}{3} & \frac{m_2}{3} - \frac{m_3}{2} & \frac{m_2}{3} + \frac{m_3}{2} \end{pmatrix}$$

Couplings of the Mass Eigenstates

Rotation of couplings from flavor to mass basis:

- Gauge couplings
 - to Z boson

$$g_{Z}Z(\bar{\nu}_{\alpha}\nu_{\alpha}+\bar{\xi}^{0}\xi^{0}+\bar{\xi}'^{0}\xi'^{0}) \longrightarrow (g'_{Z})_{ij}Z\bar{n}_{i}n_{j}$$
where $(g'_{Z})_{ij} = g_{Z}(U^{\dagger}_{i\alpha}U_{\alpha j}+U^{\dagger}_{i\xi}U_{\xi j}+U^{\dagger}_{i\xi'}U_{\xi' j})$

 \Box to W boson

$$g_W W^+ (ar{
u}_lpha \ell_lpha^- + ar{\xi}^- \xi^0 - ar{\xi}'^0 \xi'^-)$$

Yukawa like couplings

$$(Y_N)_{\alpha\beta}\bar{N}_{\alpha}\ell_{\beta}H_u + (\kappa_1)_{\alpha}\bar{N}'_{\alpha}\xi H_d + (\kappa_2)_{\alpha}\bar{N}'_{\alpha}\xi' H_u$$
$$\longrightarrow (Y'_N)_{\alpha i}\bar{n}_i\ell_{\beta}H_u^+ + (\kappa'_1)_i\bar{n}_i\xi^+H_d^- + (\kappa'_2)_i\bar{n}_i\xi'^-H_u^+$$

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Process	σ [fb] (7 TeV)	σ [fb] (14 TeV)
$pp ightarrow W^+ e^+ e^-$	$(1.651\pm 0.024)\cdot 10^2$	$(4.161\pm 0.023)\cdot 10^2$
$pp ightarrow W^- e^+ e^-$	$(9.240 \pm 0.033) \cdot 10$	$(2.671\pm 0.042)\cdot 10^2$
$pp ightarrow W^+ e^+ \mu^-$	(1.068 ± 0.099)	(2.848 ± 0.011)
$pp ightarrow W^+ e^- \mu^+$	(1.057 ± 0.013)	(2.871 ± 0.012)
$pp ightarrow W^- e^+ \mu^-$	$(5.748 \pm 0.015) \cdot 10^{-1}$	(1.742 ± 0.015)
$pp ightarrow W^- e^- \mu^+$	$(5.755\pm0.015)\cdot10^{-1}$	(1.753 ± 0.017)
${\it pp} ightarrow W^+ e^+ au^-$	(1.058 ± 0.096)	(2.861 ± 0.011)
$\it pp ightarrow W^+ e^- au^+$	(1.056 ± 0.095)	(2.854 ± 0.011)
$pp ightarrow W^- e^+ au^-$	$(5.714 \pm 0.015) \cdot 10^{-1}$	(1.754 ± 0.015)
$pp ightarrow W^- e^- au^+$	$(5.750 \pm 0.015) \cdot 10^{-1}$	(1.744 ± 0.019)
$pp ightarrow W^+ \mu^+ \mu^-$	$(1.676 \pm 0.014) \cdot 10^2$	$(4.116\pm 0.023)\cdot 10^2$
$pp ightarrow W^- \mu^+ \mu^-$	$(9.242 \pm 0.033) \cdot 10$	$(2.677\pm 0.035)\cdot 10^2$
${\it pp} ightarrow W^+ \mu^+ au^-$	$(2.668 \pm 0.024) \cdot 10^{-1}$	$(7.092\pm 0.028)\cdot 10^{-1}$
${\it pp} ightarrow W^+ \mu^- au^+$	$(2.652 \pm 0.026) \cdot 10^{-1}$	$(7.187\pm0.029)\cdot10^{-1}$
$pp ightarrow W^- \mu^+ au^-$	$(1.432 \pm 0.006) \cdot 10^{-1}$	$(4.424\pm0.038)\cdot10^{-1}$
$pp ightarrow W^- \mu^- au^+$	$(1.439 \pm 0.004) \cdot 10^{-1}$	$(4.433\pm0.037)\cdot10^{-1}$
$pp ightarrow W^+ au^+ au^-$	$(1.665 \pm 0.023) \cdot 10^2$	$(4.138\pm 0.063)\cdot 10^2$
$pp ightarrow W^- au^+ au^-$	$(9.265 \pm 0.034) \cdot 10$	$(2.652\pm 0.035)\cdot 10^2$

_

Process	σ [fb] (7 TeV)	σ [fb] (14 TeV)	
$pp ightarrow W^- e^+ e^+$	$(4.711 \pm 0.069) \cdot 10^{-12}$	$(4.847\pm 0.030)\cdot 10^{-11}$	
$pp ightarrow W^+ e^- e^-$	$(1.423 \pm 0.008) \cdot 10^{-12}$	$(1.818\pm0.071)\cdot10^{-11}$	
$pp ightarrow W^- e^+ \mu^+$	$(1.017\pm0.014)\cdot10^{-11}$	$(9.869\pm0.054)\cdot10^{-11}$	
$pp ightarrow W^+ e^- \mu^-$	$(3.184 \pm 0.015) \cdot 10^{-12}$	$(3.22\pm0.15)\cdot10^{-11}$	
$\it pp ightarrow W^- e^+ au^+$	$(1.169\pm 0.015)\cdot 10^{-11}$	$(1.050 \pm 0.054) \cdot 10^{-10}$	
$pp ightarrow W^+ e^- au^-$	$(4.173 \pm 0.020) \cdot 10^{-12}$	$(4.12\pm 0.28)\cdot 10^{-11}$	
pp $ ightarrow W^- \mu^+ \mu^+$	$(5.861 \pm 0.082) \cdot 10^{-9}$	$(2.278\pm 0.013)\cdot 10^{-8}$	
$pp ightarrow W^+ \mu^- \mu^-$	$(2.377 \pm 0.010) \cdot 10^{-9}$	$(1.153 \pm 0.017) \cdot 10^{-8}$	
$pp ightarrow W^- \mu^+ au^+$	$(1.184 \pm 0.013) \cdot 10^{-8}$	$(4.584 \pm 0.023) \cdot 10^{-8}$	
$pp ightarrow W^+ \mu^- au^-$	$(4.788 \pm 0.018) \cdot 10^{-9}$	$(2.363\pm 0.039)\cdot 10^{-8}$	
$\it pp ightarrow W^- au^+ au^+$	$(5.956 \pm 0.080) \cdot 10^{-9}$	$(2.292\pm 0.031)\cdot 10^{-8}$	
$pp ightarrow W^+ au^- au^-$	$(2.383 \pm 0.010) \cdot 10^{-9}$	$(1.120\pm 0.014)\cdot 10^{-8}$	

Table: Cross-sections for the processes with $W^{\pm}\ell^{\pm}\ell^{\pm}$ as final states. A cut on the invariant lepton mass of 10 GeV has been assumed.

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Process	σ [fb] (7 TeV)	σ [fb] (14 TeV)	
$pp ightarrow W^+ e^- W^- e^+$	$(3.447\pm 0.87)\cdot 10^{-1}$	(1.277 ± 0.66)	
$pp ightarrow W^+ e^- W^- \mu^+$	$(7.06\pm 0.15)\cdot 10^{-3}$	$(3.141\pm 0.027)\cdot 10^{-2}$	
$pp ightarrow W^+ e^+ W^- \mu^-$	$(6.99\pm 0.16)\cdot 10^{-3}$	$(3.206\pm 0.027)\cdot 10^{-2}$	
$pp ightarrow W^+ e^- W^- au^+$	$(1.037\pm0.020)\cdot10^{-2}$	$(4.293\pm 0.036)\cdot 10^{-2}$	
$pp ightarrow W^+ e^+ W^- au^-$	$(1.015\pm 0.021)\cdot 10^{-2}$	$(4.411\pm 0.036)\cdot 10^{-2}$	
$pp ightarrow W^+ \mu^- W^- \mu^+$	$(3.74\pm0.10)\cdot10^{-1}$	(1.279 ± 0.017)	
$pp ightarrow W^+ \mu^- W^- au^+$	$(2.913\pm 0.048)\cdot 10^{-3}$	$(1.096\pm0.007)\cdot10^{-1}$	
$pp ightarrow W^+ \mu^+ W^- au^-$	$(2.990\pm 0.042)\cdot 10^{-2}$	$(1.139\pm0.007)\cdot10^{-1}$	
$pp ightarrow W^+ au^- W^- au^+$	$(4.27\pm 0.10)\cdot 10^{-1}$	(1.606 ± 0.017)	
$pp ightarrow W^+ e^- W^+ e^-$	$(1.112\pm 0.013)\cdot 10^{-4}$	$(4.261\pm 0.028)\cdot 10^{-4}$	
$pp ightarrow W^+ e^- W^+ \mu^-$	$(1.537\pm 0.023)\cdot 10^{-3}$	$(5.810\pm0.050)\cdot10^{-3}$	
$pp ightarrow W^+ e^- W^+ au^-$	$(4.721\pm 0.055)\cdot 10^{-3}$	$(1.761\pm 0.016)\cdot 10^{-2}$	
$pp ightarrow W^+ \mu^- W^+ \mu^-$	$(4.099\pm 0.052)\cdot 10^{-3}$	$(1.514\pm0.013)\cdot10^{-2}$	
$pp ightarrow W^+ \mu^- W^+ au^-$	$(2.704 \pm 0.036) \cdot 10^{-2}$	$(1.062\pm0.093)\cdot10^{-1}$	
$pp ightarrow W^+ au^- W^+ au^-$	$(4.614\pm 0.065)\cdot 10^{-2}$	$(1.729\pm 0.016)\cdot 10^{-1}$	

Table: Cross-sections for the processes with $W^+\ell^-W^\pm\ell^\mp$ as final states. A cut on the invariant lepton mass of 10 GeV has been assumed.

GUT completion

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

- Additional particles modify running of the gauge couplings
- Spoils unification
- Add complete SU(5) multipletts to avoid this

$$\begin{split} \bar{\mathbf{5}}_{M} &= \begin{pmatrix} d_{1}^{c} \\ d_{2}^{c} \\ e^{-} \\ -\nu_{e} \end{pmatrix}_{L} = \begin{pmatrix} d_{L}^{c} \\ L \end{pmatrix} \qquad \bar{\mathbf{5}}_{\xi'} = \begin{pmatrix} d_{1}^{c} \\ d_{2}^{c} \\ d_{3}^{c} \\ \xi'^{-} \\ -\xi'^{0} \end{pmatrix}_{L} = \begin{pmatrix} d_{L}^{\prime c} \\ d_{L}^{\prime c} \\ \xi'_{L} \end{pmatrix} \qquad \mathbf{5}_{\xi} = \begin{pmatrix} d_{1}^{\prime \prime} \\ d_{2}^{\prime} \\ d_{3}^{\prime} \\ \xi^{+} \\ -\xi^{0} \end{pmatrix}_{R} \\ \\ H_{5} &= \begin{pmatrix} H_{1} \\ H_{2} \\ H_{3} \\ H_{4}^{\prime} \\ H_{0}^{\prime} \end{pmatrix} = \begin{pmatrix} H_{col} \\ H_{u} \end{pmatrix} \qquad H_{5} = \begin{pmatrix} H_{1}^{\prime} \\ H_{2}^{\prime} \\ H_{3}^{\prime} \\ H_{d}^{\prime} \\ H_{d}^{\prime} \end{pmatrix} = \begin{pmatrix} H_{col} \\ H_{d} \\ H_{d}^{\prime} \end{pmatrix} \qquad N, N'(S) \text{ fermionic singlets} \end{split}$$

Possible Scenarios

Extension of MSSM

$$W = y_1 N 5_{\xi} H_5 + y_2 N \overline{5}_{\xi'} H_5 + y_3 N \overline{5}_M H_5 + y_1', N' 5_{\xi} H_5 + y_2' N' \overline{5}_{\xi'} H_5 + y_3' N' \overline{5}_M H_5 + m_{\xi'} \overline{5}_M 5_{\xi} + m_{\xi} \overline{5}_{\xi'} 5_{\xi} + m_N N' N + m_{NN} NN + m_{N'N'} N' N' + y_d \overline{5}_M 10 H_5 + y_d' \overline{5}_{\xi'} 10 H_5 + y_u 10 10 H_5.$$

Extension of NMSSM

$$\begin{split} W &= y_1 \, N \, 5_{\xi} \, H_{\bar{5}} + y_2 \, N \, \bar{5}_{\xi'} \, H_5 + y_3 \, N \, \bar{5}_M \, H_5 + \\ & y_1', \, N' \, 5_{\xi} \, H_{\bar{5}} + y_2' \, N' \, \bar{5}_{\xi'} \, H_5 + y_3' \, N' \, \bar{5}_M \, H_5 + \\ & \lambda_{\xi'} \, S \, \bar{5}_M \, 5_{\xi} + \lambda_{\xi} \, S \, \bar{5}_{\xi'} \, 5_{\xi} + \lambda_N S \, N' N + \lambda_{NN} S \, NN + \lambda_{N'N'} S \, N' N' + \\ & y_d \, \bar{5}_M \, 10 \, H_{\bar{5}} + y_d' \, \bar{5}_{\xi'} \, 10 \, H_{\bar{5}} + y_u \, 10 \, 10 \, H_5 \, . \end{split}$$

...

Challenges

- in MSSM-like scenario: mass-terms @ TeV by hand
- NMSSM-like seesaw extension: not possible to find appropriate charge assignment
- Additional heavy d-quark like states d' and d'' → Stability? Abundancies? Constraints?

Mediators in super-multiplets

Decompositions with fermionic and scalar mediators:

 Mediators can be part of the same super-multiplet

(e.g., ϕ is SUSY partner of N) \rightarrow Scalar and fermionic component have different R-Parity \rightarrow Tree-level decomposition requires R-Parity violating couplings

 If R-Parity is broken the sneutrino will get a VEV, which generates a contribution to neutrino mass via a d=5 operator

There are 4 possible topologies for an effective d = 7 operator in the THDM:

Only topology 1 and 2 are allowed in SUSY

Topologies

There are 4 possible topologies for an effective d = 7 operator in the THDM:

Only topology 1 and 2 are allowed in SUSY

Effective Operator: $LLH_uH_uH_d$

Topology 4

- **Right vertex must be** $HHH\phi^{\dagger}$
- In **SUSY** only **4-vertices** of the type $\phi_a^{\dagger} \phi_b^{\dagger} \phi_c \phi_d$ are possible because of **holomorphy of the superpotential**
- \Rightarrow Topology 4 is forbidden in SUSY

- SUSY only allows $HH\phi^{\dagger}$ for the right vertex
- Middle vertex must be $HH\phi_a^{\dagger}\phi_b^{\dagger}$
- Vertices can not be connected by a propagator
- \Rightarrow Topology 3 is forbidden in SUSY

Effective Operator: $LLH_uH_uH_d$

Topology 4

- **Right vertex must be** $HHH\phi^{\dagger}$
- In **SUSY** only **4-vertices** of the type $\phi_a^{\dagger} \phi_b^{\dagger} \phi_c \phi_d$ are possible because of **holomorphy of the superpotential**
- \Rightarrow Topology 4 is forbidden in SUSY

- SUSY only allows $HH\phi^{\dagger}$ for the right vertex
- Middle vertex must be $HH\phi_a^{\dagger}\phi_b^{\dagger}$
- Vertices can not be connected by a propagator
- \Rightarrow Topology 3 is forbidden in SUSY

Effective Operator: $LLH_uH_uH_uH_d$

Topology 4

- **Right vertex must be** $HHH\phi^{\dagger}$
- In **SUSY** only **4-vertices** of the type $\phi_a^{\dagger} \phi_b^{\dagger} \phi_c \phi_d$ are possible because of **holomorphy of the superpotential**
- \Rightarrow Topology 4 is forbidden in SUSY

- SUSY only allows $HH\phi^{\dagger}$ for the right vertex
- Middle vertex must be $HH\phi_a^{\dagger}\phi_b^{\dagger}$
- Vertices can not be connected by a propagator
- \Rightarrow Topology 3 is forbidden in SUSY

Effective Operator: $LLH_uH_uH_uH_d$

Topology 4

- **•** Right vertex must be $HHH\phi^{\dagger}$
- In SUSY only 4-vertices of the type $\phi_a^{\dagger} \phi_b^{\dagger} \phi_c \phi_d$ are possible because of holomorphy of the superpotential
- \Rightarrow Topology 4 is forbidden in SUSY

- SUSY only allows $HH\phi^{\dagger}$ for the right vertex
- Middle vertex must be $HH\phi_a^{\dagger}\phi_b^{\dagger}$
- Vertices can not be connected by a propagator
- \Rightarrow Topology 3 is forbidden in SUSY

Effective Operator: $LLH_uH_uH_uH_d$

Topology 4

- **•** Right vertex must be $HHH\phi^{\dagger}$
- In SUSY only 4-vertices of the type $\phi_a^{\dagger} \phi_b^{\dagger} \phi_c \phi_d$ are possible because of holomorphy of the superpotential
- \Rightarrow Topology 4 is forbidden in SUSY

- SUSY only allows $HH\phi^{\dagger}$ for the right vertex
- Middle vertex must be $HH\phi_a^{\dagger}\phi_b^{\dagger}$
- Vertices can not be connected by a propagator
- \Rightarrow Topology 3 is forbidden in SUSY