

A search for ttbar resonances in the lepton plus jets channel with ATLAS

Marcello Barisonzi on behalf of the ATLAS Collaboration

- Physics models
- Data sample
- Object reconstruction
- Event selection
- Background estimation
- Systematic uncertainties
- Invariant mass reconstruction
- Bayesian limit
- Results
- Prospects of the boosted objects analysis

Physics models

- Several BSM physics models foresee heavy particles decaying into a ttbar resonance at LHC
- To test discovery potential at ATLAS, two benchmark models were studied:
 - Leptophobic topcolor Z' (hep-ph/9911288) to study the analysis performance with narrow resonances and compare results with DØ
 - Kaluza-Klein gluon appearing in Randall-Sundrum models with a warped extra dimension (ATL-PHYS-PUB-2010-008) to study the analysis performance with wide resonances
- Signature: local enhancement (bump) in the invariant mass distribution of the ttbar pair
- As the boost of the top quarks increases, however, decay products of the top pair tend to merge into "monojets"
- Results of the lepton + jets resolved top analysis (ATLAS-CONF-2011-087) and prospects of the boosted objects analysis (ATL-PHYS-PUB-2010-008) will be presented

Resolved analysis

- Electrons:
 - p_τ > 25 GeV, |η|<2.47
 - Isolation: (energy deposited in cone of radius $\Delta R=0.2$) < 4 GeV
- Muons:
 - p_τ > 20 GeV, |η|<2.5
 - Isolation: (energy deposited in cone of radius ΔR=0.3) < 2.5 GeV (sum of track momenta within ΔR=0.3) < 2.5 GeV
- Jets: AntiKt 0.4 algorithm from topological clusters + EM scale calibration
 - $p_{\tau} > 25$, energy scale correction factor from MC (binned in η and p_{τ})
- B-tagging: Secondary Vertex tagger, select jets with decay length significance >5.85
- Missing transverse energy: Vector sum of calorimeter cells associated to object, with dedicated correction factor.
 - Adding p_{τ} of muons passing selection while subtracting muon deposits in calorimeter cells.
 - Remaining clustered energies included at EM scale

Event selection

ATLAS-CONF-2011-087

- Event quality:
 - Lepton trigger
 - At least 1 vertex with \geq 5 reconstructed tracks
 - Event discarded if any jet with p_T > 20 GeV is out-of-time or has calorimeter noise
- Signature cuts:
 - Exactly 1 isolated lepton which must match triggered lepton
 - Veto event if an electron shares an inner detector track with non-isolated muon
 - At least 4 jets with $p_{\tau} > 25$ GeV; at least 1 b-tagged jet
- Background rejection cuts:
 - Electrons: E_{T} Miss > 35 GeV ; M_{T} (lepton, E_{T} Miss) >25 GeV
 - Muons: E_{T} Miss > 20 GeV ; E_{T} Miss+ M_{T} (lepton, E_{T} Miss) >60 GeV

Data sample

- Data collected in Spring 2011
- Integrated luminosity after Data Quality cuts: 200±9 pb⁻¹

Background estimation

- Data-driven QCD estimation:
 - Substitute lepton with one jet with high EM calorimeter energy fraction (0.80-0.95) with at least four tracks
- QCD fraction: (12±2)% for Electron channel, (14±5)% for Muon channel

Background estimation

 Comparison of Monte Carlo and QCD spectra after selection shows good agreement with data

ATLAS-CONF-2011-087

BERGISCHE

JPPERTAL

Expected and observed y	ields after event se	ection for 200 fb ⁻¹
-------------------------	----------------------	---------------------------------

	Electron channel	Muon channel
tī	724	988
Single top	36	50
W+jets	93	172
Z+jets	6	8
Diboson	2	2
Total MC Background	861	1220
QCD Background	35	105
Total Expected	896	1325
Data observed	935	1396
$Z', m = 500 { m GeV}$	15	21
$g_{KK}, m = 700 \text{ GeV}$	68	93

Invariant mass reconstruction

- Neutrino p_reconstructed by imposing W mass constraint
- Crucial to keep tails in the invariant mass distribution under control
- Influence of ISR and FSR jet reduced by applying ΔR constraint: remove jets if $\Delta R > 2.5 0.015 \times m_j$, where m_j is the jet mass and ΔR is w.r.t. the lepton or the nearest jet
- Method tested on Z' Monte Carlo, good resolution achieved

ATLAS-CONF-2011-087

 Search of excess data with BumpHunter finds no evidence of resonance in invariant mass spectrum

BERGISCHE

UNIVERSITÄT WUPPERTAL

- Bayesian approach to estimate limits for cross-section of BSM models:
 - Assume bins distributed by Poisson distribution
 - Include systematic uncertainties by smearing the Poissonian
 - Multiply for each mass bin the likelihood of data being from SM processes only
 - Prior probability distribution of signal: uniform distribution
 - Evaluate 95% C.L. from posterior distribution to extract limits

Systematic uncertainties

ATLAS-CONF-2011-087

BERGISCHE

JPPERTAL

		Systematic uncertainties
Luminosity		4.5%
Background normalization	SM tī	(+7.0 -9.6)%
	Single top	10%
	W+jets	35%
	Dibosons	5%
	QCD	e:30% μ:50%
Lepton trigger and reconstruction efficiencies		$\leq 1.5\%$

- The dominant shape uncertainties arise from b-tagging efficiency (11%), jet energy scale (9%), modeling of ISR/FSR (7%).
- Other uncertainties on MC modeling have substantially smaller impact.

Results

ATLAS-CONF-2011-087

- For Topcolor Z' resonances the observed 95% C.L. limits range from:
 - 38 pb at m = 500 GeV to
 - 3.2 pb at m = 1300 GeV

ATLAS-CONF-2011-087

 Kaluza-Klein gluons with masses below 650 GeV are excluded at 95% C.L.

Results

Boosted Analysis

Boosted objects analysis

ATL-PHYS-PUB-2010-008

- Topology of ttbar events changes as total invariant mass increases
- At low end of the spectrum, decay products of top pair fully resolved
- As invariant mass increases, angular separation between decay products narrows, jets merge
- At very high m_{tt}, top pair decay products collimated into back-toback "monojets"
- Monojets have typically a large mass; study of monojet substructure was performed

Boosted top pair candidate

ATLAS-CONF-2011-073

BERGISCHE

UNIVERSITÄT WUPPERTAL

- In simulation, final states with m_{jet}~m_{top} have a good jet-mass resolution
- Pile up is biggest problem:
 - influences anti-kt 1.0; needs calibration
 - Cambridge-Aachen jets seem less affected
- Jet mass in data described reasonably by Pythia and Herwig

7.12.2011 M. Barisonzi -- 5th Annual Workshop of the Helmholtz Alliance, 7-9/12/2011, Bonn

- Boosted top analysis will improve chances to find high-mass resonances if any exist. Otherwise, stringent limits can be set
- With 200 pb⁻¹ at 10 TeV, exclusion limits can be set for processes with cross-section ~3 pb and a resonance mass of 1 TeV; more stringent limits at higher masses

Conclusions

- A search for top quark pair resonances in the lepton plus jets final states has been performed with the ATLAS experiment at the LHC, with fully resolved top decay products
- No evidence for resonances was found, limits were set to BSM physics
- For narrow (Topcolor Z') resonances the observed 95% C.L. limits range from:
 - 38 pb at m = 500 GeV to
 - 3.2 pb at m = 1300 GeV
- Wide resonances (Kaluza-Klein gluons) with masses below 650 GeV are excluded at 95% C.L.
- The search for resonances is expected to improve significantly with the combination of the resolved analysis with the boosted top analysis