

Emmy Noether-Programm

Kirika Uchida Universität Bonn 07.12.2011

Helmholtz Alliance PHYSICS AT THE TERASCALE 5th Annual Workshop in Bonn

PHYSICS AT THE TERASCALE Helmholtz Alliance

ttbar production and decay

- ttbar decay categorized by W decay
 - top decay
 - W & b ~100 %
 - W decay
 - e⁺(μ⁺) ν_e(ν_μ) W+• -----Ieptonic decay τ leptonic decay is included.
 - hadronic decay
- W+•• qbar

universitätbo

- dilepton lepton channel 2 W leptonic decay 6.5 %
- single lepton channel 1 W leptonic decay 37.9%

Emmy Noether-

DFG

ät Bonn, 07.12.2011

ttbar cross-section measurement with 35pb⁻¹

combination

ATLAS-CONF-2011-040

Kirika Uchida, Universität Bonn, 07.12.2011

ttbar cross-section measurement with 35pb⁻¹

- •**ttbar/Z** σ_{tt} with luminosity measurement using Z,
- Inclusive σ_{tt} with $\sigma_{WW,} \sigma_{\tau\tau}$, fitting Missing $E_T \& \#$ of jets,
- **b-tagging fit** σ_{tt} with b-tagging efficiency measurement.

dilepton

arXiv:1108.3699 submitted to Phys. Lett. B

Helmholtz Alliance PHYSICS AT THE TERASCALE 5th Annual Workshop in Bonn

Kirika Uchida, Universität Bonn, 07.12.2011

ttbar production cross-section measurement in dilepton channel with 0.70 fb⁻¹

Outline

Cut and count analysis

- 2 identified leptons w/o b-tagging
- 2 identified leptons with b-tagging
- Background data driven estimate
 - Z/γ^* + jets (Drell-Yan) for ee/µµ
 - Fake (non-prompt) lepton evnet (W+jets)
- Background MC estimate
 - *Ζ*(ττ) + jets
 - single top
 - diboson

Helmholtz Alliance PHYSICS AT THE TERASCALE 5th Annual Workshop in Bonn

Event selection

Good data taking condition, at least 1 single lepton trigger, primary vertex with at least 4 tracks, cosmic muon veto.

W/O btagging

Exactly two isolated high-p_T opposite charge leptons (e/ μ) e : p_T > 25 GeV, $|\eta| < 2.47$, excluding 1.37 < $|\eta| < 1.52$ μ : p_T > 20 GeV, $|\eta| < 2.5$

Two or more high p_T (> 20 GeV) anti- k_T (R=0.4) jets with TopoCluster & EM+JES calibration

 $M_{II} > 15 \text{ GeV \&\&} |M_{II} - M_Z| > 10 \text{ GeV}$

Missing $E_T > 60$ GeV for ee, $\mu\mu$

HT (sum of all selected lepton p_T and jet E_T) > 130 GeV for $e\mu$

• With btagging

The same as w/o btagging analysis except for Missing $E_T > 40$ GeV for ee, $\mu\mu$, at least 1 btagged jet (b-jet eff. for inclusive ttbar jets = 80 %)

Data driven background estimate

8

urika Uchida, Universität Bonn, 07.12.2011

Event Yield

	ee	μμ	еμ	b-tag ee	b-tag μμ	b-tag eμ
$Z/\gamma^*(\rightarrow ee/\mu\mu)$ +jets	$3.8^{+2.5}_{-1.2}$	14.8 ± 4.7	-	9.3+3.7	$19.1^{+2.4}_{-1.6}$	-
$Z/\gamma^* (\rightarrow \tau \tau)$ +jets	5.2 ± 2.6	11.2 ± 4.8	43 ± 16	$1.6^{+1.1}_{-0.9}$	7.0+2.8	$9.1^{+3.6}_{-3.7}$
Fake leptons	3.1 ± 2.2	0.3+0.6	44 ± 24	4.9 ± 3.1	1.0 ± 0.8	19 ± 12
Single top quarks	6.6 ± 1.2	16.2 ± 2.0	40.9 ± 5.6	6.8 ^{+1.3}	$15.4^{+2.5}_{-2.4}$	$30.8^{+4.9}_{-4.5}$
Diboson	5.6 ± 1.0	8.2 ± 1.2	30.9 ± 4.6	2.1 ± 0.8	$2.7^{+0.9}_{-0.6}$	$8.7^{+1.5}_{-1.3}$
Total bkg.	$24.3^{+5.4}_{-4.7}$	50.8 ± 8.4	158 ± 34	$24.7^{+5.2}_{-4.0}$	$45.2^{+4.6}_{-4.4}$	68 ± 14
Predicted $t\bar{t}$	130 ± 16	243^{+22}_{-27}	728 ± 59	161 ± 21	304 ⁺²⁹ -37	644_{-74}^{+60}
Total	154 ± 17	294^{+23}_{-28}	886 ± 68	186 ± 21	349 ⁺³⁰ -37	712+61
Observed	165	287	962	202	349	823

Systematics

w/o btagging

with btagging

			-						
	ee	μμ	еµ	Combined		ee	μμ	еµ	Combined
Uncertainty Source	$\Delta \sigma / \sigma [\%]$	Uncertainty Source	$\Delta \sigma / \sigma [\%]$						
Data statistics	-9.3/9.8	-6.6/6.8	-4.1/4.2	-3.3/3.3	Data statistics	-8.3 / 8.7	-5.8 / 6.1	-4.2/4.4	-3.2/3.3
Luminosity	-4.0/4.7	-3.7 / 4.3	-4.3 / 4.7	-4.2/4.6	Luminosity	-3.8/4.5	-3.7 / 4.1	-4.3 / 4.7	-4.1/4.5
MC statistics	-4.2/4.9	-2.8/3.2	-1.9/2.1	-1.5/1.6	MC statistics	-3.8/4.5	-2.6/2.9	-2.1/2.2	-1.5 / 1.6
Lepton energy scale	0.0/0.9	0.0/0.5	-0.3 / 0.3	-0.4 / 0.0	Lepton energy scale	-0.7 / 0.0	-0.5 / 0.0	-0.3 / 0.3	-0.3 / 0.3
Lepton energy resolution	0.0 / 0.6	-0.5 / 0.8	0.0/0.5	-0.4 / 0.3	Lepton energy resolution	0.0/0.4	-0.6/0.0	0.0/0.0	0.0/0.3
Lepton indent. scale factor	-5.5/6.6	-1.2/2.7	-3.1/3.4	-2.6/2.7	Lepton ident. scale factor	-5.5/6.3	-2.3/2.4	-3.1/3.4	-2.4/2.6
Jet energy scale	-10.0 / 10.6	-3.8/7.6	-3.7 / 4.5	-5.9 / 5.3	Jet energy scale	-9.7/4.8	-4.9 / 5.5	-4.9/5.1	-4.7 / 5.3
Jet energy resolution	-0.6 / 0.8	-3.1/3.6	-0.6 / 0.7	-0.4 / 0.3	Jet energy resolution	-1.9/2.0	-1.4/1.3	-1.4/1.4	-1.4 / 1.5
Jet reconstr. efficiency	0.0 / 0.0	0.0/0.0	0.0/0.0	0.0/0.0	Jet reconstr. efficiency	0.0/0.0	-0.6 / 0.0	-0.3 / 0.3	-0.3 / 0.3
Drell-Yan prediction	0.0 / 0.0	-0.4 / 0.4	0.0/0.0	0.0/0.0	Drell-Yan prediction	-0.6/0.6	-0.6 / 0.0	0.0/0.0	0.0/0.0
Fake leptons	-1.6/1.6	-0.4 / 0.4	-3.2/3.2	-2.0/1.9	Fake leptons	-1.9/1.8	-0.6 / 0.0	-1.9/1.8	-1.1/1.2
MC generator	-4.3 / 5.3	0.0/0.0	-2.9/3.2	-2.1 / 2.3	MC generator	-5.7/7.0	-1.3/1.3	-2.7 / 2.9	-0.7 / 0.7
Parton shower	-4.7 / 5.8	-0.4 / 0.5	-2.9/3.2	-2.3 / 2.4	Parton shower	-0.6/0.0	0.0/0.0	0.0/4.0	0.0/0.3
ISR	-7.1/0.6	-0.8 / 3.6	-0.5 / 2.4	-2.4 / 2.5	b-tag efficiency	-3.2/4.5	-3.0/4.1	-3.5/4.7	-3.4/4.5
FSR	-13.6/0.6	-0.7 / 4.3	-2.4/0.5	-1.3/1.4	Light quark tag eff.	0.0/0.0	-0.6/0.0	-0.5/0.0	-0.3 / 0.3
PDF	-2.4/2.8	-1.7 / 2.2	-2.4 / 2.7	-2.3 / 2.5	ISR	-4.8/5.8	-1.5/1.5	-0.3/0.4	-0.4 / 0.4
$E_{\rm T}^{\rm miss}$ reconstruction	-1.0/1.1	-0.8 / 1.7	0.0/0.0	-0.5 / 0.6	FSR	-8.7/11.2	-2.8/3.1	-0.9/0.8	-2.0/2.1
Pile-up	-0.6 / 1.3	-0.5 / 1.5	0.0 / 0.0	-0.5 / 0.5	PDF	-2.7/3.2	-2.3/2.5	-2.4/2.6	-2.5/2.7
Detector modeling	-0.6/1.1	-0.7 / 1.5	-0.7 / 1.2	-1.0/1.3	E_{∞}^{miss} reconstruction	-0.9/0.0	-1.0/0.0	0.0/0.0	-0.0 / 0.0
Theoretical cross-sections	-1.4/1.3	-1.7 / 1.8	-2.1/2.1	-1.9 / 1.9	Pile-up	-0.8/0.0	-0.3/0.0	0.0/0.0	-0.0 / 0.0
All systematics	-20/18	-7.3 /13	-9.2/11	-9.3 / 10	Detector modeling	-0.7/1.4	-0.8/2.2	-1.1/1.6	-1.9/1.8
Stat + Syst	-22 / 20	-9.9 / 15	-10/12	-9.8/11	Theoretical cross-sections	-0.4/0.4	-1.1/0.6	-0.7 / 0.7	-0.7 / 0.7
					All systematics	-16/20	-79/99	-82/11	-81/97

: > 2%, but smaller in the other analysis

Helmholtz Alliance PHYSICS AT THE TERASCALE5th Annual Workshop in Bonn

○:>4%

Kirika Uchida, Universität Bonn, 07.12.2011

Stat. + Syst.

-10/13

-9.0/11

-10/12

-19/22

Result

ATLAS-CONF-2011-100

universität**bonn**

DFG

Helmholtz Alliance PHYSICS AT THE TERASCALE 5th Annual Workshop in Bonn

11

Kirika Uchida, Universität Bonn, 07.12.2011

Conclusion

- ttbar cross section measurement in dilepton channel is reduced down to 10% (NNLO prediction uncertainty = 10%)
- dilepton channel has enough statistics and the statistical error is ~3%.
- Further effort to reduce the systematic uncertainty in dilepton channel is on going.
 - Multivariate analysis

12

Noether