

Search for Heavy Resonances in Top Quark Pair Production Thomas Peiffer

Terascale Workshop Bonn, 7.12.2011

Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology

Search for Heavy Resonances

- Top quarks play important role in many new physics scenarios.
- New physics might also show up as resonance in the $M_{t\bar{t}}$ spectrum directly.
- Possible candidates for such resonances:
 - Kaluza-Klein gluons
 - Topcolor Z'
 - Exotic heavy Higgs bosons

Presented measurement: model independent search for narrow resonances in the muon+jets decay channel.

Top quarks originating from a heavy resonance decay are produced with large boost v = l

SM top pair:

Signature:

- one charged lepton
- missing transverse energy (neutrino)

4 jets

Signature:

Boosted tops:

- one (often non-isolated) charged lepton
- missing transverse energy
- 2 or more high-energetic jets

p

b-iet

1e

Distances between the decay products of the top quarks:

Generator study with MadGraph for I+jets decay channel

- CMS data with L_{int}=1.1 fb⁻¹
- single muon trigger
- at least 2 jets with $p_T > 50$ GeV/c and $|\eta| < 2.4$
- leading jet with $p_T > 250 \text{ GeV/c}$
- one muon with $p_T > 35$ GeV/c and
 - |η|<2.1
 - instead of isolation cut: combined
 2D cut on p_{T,rel} and ΔR(I,jet)
- $H_{T,lep} > 150 \text{ GeV} (H_{T,lep} = p_{T,lep} + E_T^{miss})$

Inverted 2D cut is utilized to model QCD background from data.

Process	N _{exp}			ϵ [%]
	Jet cut	Lepton cut	$H_{T,lep}$ cut	
W+jets	2780.7	2157.4	1385.9 ± 93	$3.9 imes 10^{-3}$
Z+jets	452.3	393.4	204.3 ± 13	$5.9 imes 10^{-3}$
QCD t ī	1090.8	613.9	385.3 ± 60	0.21
Single-Top	73.7	40.0	26.0 ± 1.8	0.058
QCD multijet			57.2 ± 9	
Total background			2058.7 ± 130	
Data			1817	
$Z'(M=1 \text{ TeV}/c^2)$	125.7	58.7	46.5	4.1
$Z' (M = 2 \text{ TeV}/c^2)$	306.6	130.2	121.8	10.7
$Z' (M = 3 \text{ TeV}/c^2)$	294.6	119.7	113.6	9.9

A new reconstruction technique of the top 4-momenta has to be developed in the high mass selection (only 2 jets required, decay products not well separated).

- Assign each jet to either the leptonically or hadronically decaying top quark or to none of them.
- One or two solutions for neutrino momentum from W mass constraint
- Choice of hypothesis:
 - 1st: reconstruct leptonic top:
 Take hypotheses with smallest:

$$\Sigma \Delta R = \Delta R(b_{lep}, t_{lep}) + \Delta R(\nu, t_{lep}) + \Delta R(lep, t_{lep})$$

 2nd: reconstruct hadronic top: From all remaining hypotheses choose hypothesis with largest:

$$\Delta R(t_{\rm had}$$
 , $t_{\rm lep})$

Relative mass resolution for selected reconstruction hypothesis compared to best possible one in simulation:

Best resolution reached for resonance masses of several TeV.

Likelihood Fit

- Binned likelihood fit is performed to estimate signal fraction or upper limits on resonance cross section.
- Fit is performed simultaneously for M_{tt} distribution and H_{T,lep} in sideband to constraint the background contributions.
- Systematic uncertainties are included as additional nuisance parameters.
- Considered systematics: jet energy scale, jet energy resolution, Q2 scale, matching threshold, ISR/FSR, QCD model, luminosity, PDF

Background templates scaled to most probably value given by the likelihood fit:

Good agreement between data and background models.

- Upper limits on resonance cross section obtained from Bayesian inference of the likelihood function.
- Expected limits from pseudo experiments with background only are in good agreement with observed limits.
- Obtained limits are below 1 pb for resonance masses above 1.3 TeV/c².
- Can exclude topcolor Z' reference model with a width of 3% for masses around 1 TeV/c².

- New physics could be visible as resonance in $M_{t\bar{t}}$.
- Developed strategy to search for such resonances in the multi-TeV range using the muon+jets decay channel.
- Obtained limits are of the order of 1 pb or smaller with 1.1 fb⁻¹ of CMS data.
- No hint for new physics yet.

Reference: CMS-PAS EXO-11-055