LUXE ECAL TB2022 noise study

Melissa Almanza, César Blanch, <u>Adrián Irles</u> 20th March 2024

*AITANA group at IFIC - CSIC/UV

Outline

- ► ECAL-e CALICE activities (snapshot)
- ▶ECAL-p activities
 - Carbon Frames
 - Metrologis
 - Glue thickness studies
- ▶ Plans 2024

IFIC

▶Input info

- I use 10000 ROC (ReadOut Cycles) with no telescope coincidence required
- Run: 4533
- Calice 74
- Raw data in root file provided by Melissa (with help/support of Dawid and Shan)
- Pedestal subtracted by Dawid
- In every ROC, every channel provides 63 ADC samples (63 time samples).
- I divide the 63 in 3 sectors: I, II, III

Pre-study

- Are the pedestals correctly calculated?
- For region **III**
 - I calculate the pedestals with two methods: simple average (Mean Histogram) and gaussian fit

The results are in good agreement with Dawid calculations within ~0.02ADC

Pre-Study

Pre-study

IFIC

Pre-Study

IFIC INSTITUT DE FÍSICA CORPUSCULAR

Pre-study

IFIC INSTITUT DE FÍSICA CORPUSCULAR

PRe-study: comparison regions

Conclusion pre-study

- Pedestals are correctly calculated within few 0.01ADC
- ▶ Width/noise is ~0.8ADC for most channels but there are some outliers and channels behaving funny
 - I am pretty sure that this is not new (channels that are not connected to the electronics, or known to be noisier, or wrongly glued) → I still need to cross check all this with Melissa's notes.
- ▶ However, I propose a method to study these features systematically
 - The goal is to study in deep the differences between Si and GaAs

Coherent noise source identification in multi channel analysis https://arxiv.org/pdf/1401.7095.pdf

T. Frisson^{*1} and R. Poeschl¹

¹Laboratoire de L'accélerateur Linéaire (LAL), CNRS/IN2P3, Orsay, France

May 4, 2021

- "The goal is to identify and characterize dissociable noise sources in a multi channel systems. This method cannot separated noise sources which affect exactly the same set of channels. In this case, the noises sources are processed as a single source. We consider a system with N channels. "
- "Each channel **k** is affected by an incoherent noise source **I_k** and Nc coherent noise sources (**C1_k, C2_k,... CN_k**). We assume that all noise source distributions are Gaussian and independent."

IFIC
INSTITUT DE FÍSICA
CORPUSCULAR

commercia in

$$\sigma_i^2 = \sigma_{I_i}^2 + \sum_{j=1}^{N_c} \sigma_{C_i^j}^2 \tag{1}$$

The covariance matrix element from the two channels i and k is expressed by:

$$cov(i,k) = \delta_{ik}\sigma_{I_i}\sigma_{I_k} + \sum_{j=1}^{N_c} \sigma_{C_i^j}\sigma_{C_k^j}$$
(2)

where:

$$\delta_{ik} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases} \tag{3}$$

The covariance matrix element can also be determined from the data:

$$cov_{Data}(i,k) = \frac{\sum_{n=1}^{N_{event}} (A_i(n) - \mu_{A_i})(A_k(n) - \mu_{A_k})}{N_{event}} \tag{4}$$
 Pedestal position \rightarrow calculated as simple no hit histogram Mean

IFIC

▷Input info (same as before)

 I recalculate the pedestal on the fly to correct for the minor differences observed

Inocoherent noise

IFIC

Compatible results for all channels

- Region II shows systematically lower values ~0.02ADC
- 60, 61, ... = beam spot (wider because of signal treated as noise)

$$\sigma_i^2 = \sigma_{I_i}^2 + \sum_{i=1}^{N_c} \sigma_{C_i^j}^2$$

Inocoherent noise

Compatible results for all channels

- Region II shows systematically lower values ~0.02ADC
- 60, 61, ... = beam spot (wider because of signal treated as noise)

$$\sigma_{i}^{2} = \sigma_{I_{i}}^{2} + \sum_{i=1}^{N_{c}} \sigma_{C_{i}^{j}}^{2}$$

Coherent noise

Compatible results for all channels

- Region II shows systematically lower values ~0.02ADC
- Beam spot is not "understood" as coherent noise.

$$\sigma_{i}^{2} = \sigma_{I_{i}}^{2} + \sum_{j=1}^{N_{c}} \sigma_{C_{i}^{j}}^{2}$$

Irles A., , 20th March 2024

Two sources of coherent noise

I: t=0 → t<20

Two sources of coherent noise

Low amplitude signals in pads: C75

Shown by Melissa in VLC meeting

Summary

- Work-in-progress but it seems that the covariance matrix seems a very useful characterization tool for the noise of the modules in TB2022
- I did not have time to cross-check with existing info of the sensor and electronics (noisy channels, dead channels, etc...)
- So far only a small data sample used with only one sensor
 - Please, provide me with files for all sensors → will this tool be able to tell something about the traces of the GaAs ??
- Once that we have all sensors analyzed would it be worthy to include this study in the paper?
- Code will be submitted to gitlab
- LUXE syle plots can be provided if requested.

incoherent

III: t=0 → t<63

Nc=4

channel map

