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The Inspiral Phase of a Binary System
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Picture from https://lisa.nasa.gov/ represent-
ing the three phases of a black hole collision.
After an initial inspiral, the merger follows. A
new asymmetric black hole is formed.

Picture from: [1601.04914]. During the so-
called inspiral phase, the dynamics of the bi-
nary problem can be separated into different
parts:

P The internal zone: This is the scale
of finite size effects. For compact
neutron stars or black holes we have
rs ~2Gm.

P The near (or potential) zone: The
intermediate region is the orbit scale,
T, given by the typical separation
between the constituents of the
binary.

»  The far (or radiation) zone: This is
the scale of gravitational waves,
emitted with typical wavelength
Arad ~ T/ 0.




Effective Field Theory Setup

Slow inspiral phase (v < 1), hierarchical structure (Goldberger, W. D., and Rothstein, I. [0409.156]):
rs K1 < Agw
further constrained by the virial theorem v2 ~ GM /7.

Relevant symmetries of the problem:

Relevant degrees of freedom: . .
€ P General coordinate and wordline

> The gravitational field g g (). reparametrization invariance:
[ ~o
»  The black hole’s worldline coordinate 2% = &%(x) and A = A(A).

(), with X an affine parameter. P SO(3) invariance i.e. compact
objects are perfectly spherical.

Expansion around Minkwoski + “background field” method:

h h H
pv () . ::(r) o uu(z),

Guv(z) = Npw +
Pl 2y

with the following scaling rules for potential and radiation modes:

v 1 - v
ot (2) 1 e (2) o (2).

h=1, c¢=1, mp; =1/V32rG, mnyu, = diag(+, —, —, —).



Fully Diagrammatic Approach

“Integrating-out” the shortest scale rg, the action reads:

S =SgHa +SaF + Spp

with Spg = —Qm%l I d4z\/—gg,“,R‘“' and Spp = —34=1,2 Ma J dra.

The NRGR (Non-Relativistic-General-Relativity) effective action yields:

&t SNRGR[Za h] _ / DH,, i SeH[ht+H]+i Sgph+H]|+iSpplza htH]

Expanding in the radiation field:

SNRGR [Ta, k] = So [xa] + S1 [Za, h] + O (}12) .




Extracting Feynman Rules

7

We are now able to compute to some (Post-Newtonian) order in the v < 1 expansion the quantities
» from Sy — mechanical energy of binary
» from S; — power emitted in gravitational waves (via optical theorem)

Solving the energy conservation equation dE /dt = — P
P we obtain a differential equation for v(t) (or, equivalently, for w(t) and thus ¢(t)).

P the phase is needed by current GW-detectors, since the typical signal is decomposed as

h(t) = A(t) cos(6(t))

\.

From the Einstein-Hilbert term we can extract graviton self-interactions with Feynman vertices containing any
number of graviton lines:

—om2, f d'z GR(x) — f diz [(ah NG NCI.

mpi m2,
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From the point-particle term, we can extract the non-linear interactions between the gravitational field and the two

“particles” (recalling dT = /g dzFdz?)
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Example: Next-to Leading Order Lagrangian
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The leading order Lagrangian is derived from the single-graviton exchange diagram:
1 Gnymim
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The Next-to Leading Order Lagrangian (also called Einstein-Infeld-Hoffman Lagrangian), comes from the “seagull”
and three-graviton vertex diagrams (among others):
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Conservative Sector Q3PN

Applying the Legendre transformation to the effective Lagrangian (64 diagrams in total!):
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Binding energy for circular orbits (x = (GMu)2/3):
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Our result agrees with e.g. Blanchet L. Living Rev. Rel. 17 [1310.1528].




Radiative Sector @3PN

Gravitational Flux for circular orbits (x = (GMw)2/3)
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Once again, our result agrees with e.g. Blanchet L. Living Rev. Rel. 17 [1310.1528].
Within “dimensional regularization”, extensively used in the EFT approach, we set d = 3 — 2¢ and employ e.g.

1 5 w2 2
F(d73):7£7’yE7 'yE+? e+ O(e7).



Conclusions
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How to advance the EFT state of the art within the Post-Newtonian framework:
» 4PN radiative dynamics for non-spinning inspiralling binaries

» 3PN radiative dynamics for spinning inspiralling binaries

Thank you for your attention!



