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The Inspiral Phase of a Binary System

Picture from https://lisa.nasa.gov/ represent-
ing the three phases of a black hole collision.
After an initial inspiral, the merger follows. A
new asymmetric black hole is formed.

Picture from: [1601.04914]. During the so-
called inspiral phase, the dynamics of the bi-
nary problem can be separated into different
parts:

▶ The internal zone: This is the scale
of finite size effects. For compact
neutron stars or black holes we have
rs ≃ 2Gm.

▶ The near (or potential) zone: The
intermediate region is the orbit scale,
r, given by the typical separation
between the constituents of the
binary.

▶ The far (or radiation) zone: This is
the scale of gravitational waves,
emitted with typical wavelength
λrad ∼ r/v.



Effective Field Theory Setup
Slow inspiral phase (v ≪ 1), hierarchical structure (Goldberger, W. D., and Rothstein, I. [0409.156]):

rs ≪ r ≪ λGW ,

further constrained by the virial theorem v2 ∼ GM/r.

Relevant degrees of freedom:

▶ The gravitational field gαβ(x).

▶ The black hole’s worldline coordinate
xα(λ), with λ an affine parameter.

Relevant symmetries of the problem:

▶ General coordinate and wordline
reparametrization invariance:
xα → x̃α(x) and λ → λ̃(λ).

▶ SO(3) invariance i.e. compact
objects are perfectly spherical.

Expansion around Minkwoski + “background field” method:

gµν(x) = ηµν +
hµν(x)

mPl

= ηµν +
h̄µν(x)

mPl

+
Hµν(x)

mPl

,

with the following scaling rules for potential and radiation modes:

∂0Hµν ∼
(

v

r

)
, ∂iHµν ∼

(
1

r

)
, ∂αh̄µν ∼

(
v

r

)
.

ℏ = 1, c = 1, mPl = 1/
√
32πG, ηµν = diag(+,−,−,−).



Fully Diagrammatic Approach

“Integrating-out” the shortest scale rs, the action reads:

S = SEH + SGF + Spp ,

with SEH = −2m2
Pl

∫
d4x

√
−g gµνRµν and Spp = −

∑
a=1,2 ma

∫
dτa.

The NRGR (Non-Relativistic-General-Relativity) effective action yields:

e
i SNRGR[xa,h̄] =

∫
DHµν e

i SEH [h̄+H]+i SGF [h̄+H]+i Spp[xa,h̄+H] .

Expanding in the radiation field:

SNRGR
[
xa, h̄

]
= S0 [xa] + S1

[
xa, h̄

]
+ O

(
h̄
2
)

.



Extracting Feynman Rules

We are now able to compute to some (Post-Newtonian) order in the v ≪ 1 expansion the quantities

▶ from S0 → mechanical energy of binary

▶ from S1 → power emitted in gravitational waves (via optical theorem)

Solving the energy conservation equation dE/dt = −P

▶ we obtain a differential equation for v(t) (or, equivalently, for ω(t) and thus ϕ(t)).

▶ the phase is needed by current GW-detectors, since the typical signal is decomposed as
h(t) = A(t) cos(ϕ(t))

From the Einstein-Hilbert term we can extract graviton self-interactions with Feynman vertices containing any
number of graviton lines:

From the point-particle term, we can extract the non-linear interactions between the gravitational field and the two
“particles” (recalling dτ =

√
gµνdxµdxν )



Example: Next-to Leading Order Lagrangian

The leading order Lagrangian is derived from the single-graviton exchange diagram:

LLO =
1

2
ma

∑
a

v
2
a +

GNm1m2

r
,

The Next-to Leading Order Lagrangian (also called Einstein-Infeld-Hoffman Lagrangian), comes from the “seagull”
and three-graviton vertex diagrams (among others):

LNLO =
1

8
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mav
4
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v
2
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)
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−
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2 r2
.



Conservative Sector @3PN

Applying the Legendre transformation to the effective Lagrangian (64 diagrams in total!):
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− L (r,v1, a1, ȧ1,v2, a2, ȧ2) .

Binding energy for circular orbits (x ≡ (GMω)2/3):
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Our result agrees with e.g. Blanchet L. Living Rev. Rel. 17 [1310.1528].



Radiative Sector @3PN

Gravitational Flux for circular orbits (x ≡ (GMω)2/3)
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Once again, our result agrees with e.g. Blanchet L. Living Rev. Rel. 17 [1310.1528].
Within “dimensional regularization”, extensively used in the EFT approach, we set d ≡ 3 − 2ϵ and employ e.g.

Γ(d − 3) ≃ −
1

2ϵ
− γE −

(
γ
2
E +

π2

6

)
ϵ + O(ϵ

2
) .



Conclusions

Available reviews for those interested in the topic:

▶ Goldberger, Walter D. “Les Houches lectures on effective field theories and gravitational radiation.” arXiv
preprint hep-ph/0701129 (2007).

▶ Porto, Rafael A. “The effective field theorist’s approach to gravitational dynamics.” Physics Reports 633
(2016): 1-104.

Work done throughout my PhD:

▶ Amalberti, Loris, François Larrouturou, and Zixin Yang. “Multipole expansion at the level of the action in
d-dimensions.” Physical Review D 109.10 (2024): 104027.

▶ Amalberti, Loris, Zixin Yang, and Rafael A. Porto. “Gravitational radiation from inspiralling compact
binaries to N 3 LO in the Effective Field Theory approach.” arXiv preprint arXiv:2406.03457 (2024).

How to advance the EFT state of the art within the Post-Newtonian framework:

▶ 4PN radiative dynamics for non-spinning inspiralling binaries

▶ 3PN radiative dynamics for spinning inspiralling binaries

Thank you for your attention!


