Ultrafast Dynamics in Dense Hydrogen Explored at FLASH

Ulf Zastrau

Friedrich-Schiller-Universität Jena on behalf of the TS team within the Peak Brightness Collaboration

HELMHOLTZ ASSOCIATION

New Science Opportunities at FLASH DESY Hamburg, Germany, October 12th – 14th, 2011

The Team

> CFEL, Hamburg

R. Thiele, B. Ziaja

> DESY, Hamburg

S. Düsterer, M. Harmand, T. Laarmann, A. Przystawik, F. Tavella, S. Toleikis, M. Schultz, H. Redlin

> EMMI / GSI, Darmstadt; University of Frankfurt

P. Neumayer, D. Hochhaus

> University of Jena

E. Förster, V. Hilbert, U. Zastrau

> LCLS, Stanford

H.J. Lee

> LLNL, Livermore; ALS, Berkeley

T. Döppner, C. Fortmann, S.H. Glenzer, L. Fletcher

> University of Oxford

G. Gregori, C. Murphy, T. White

> University of Rostock

S. Göde, K.-H. Meiwes-Broer, R. Redmer, P. Sperling, S. Skruszewicz, J. Tiggesbäumker, N.X. Truong

> European XFEL, Hamburg

P. Radcliffe, T. Tschentscher

European

Structure of the Talk

> XUV Thomson Scattering to diagnose Dense Plasmas

> Innovative Instrumentation at FLASH

- > XUV-pump XUV-probe experiments
- > IR-pump XUV-probe experiments
- > Additional Diagnostics: TOF and "fs imaging system"

Ulf Zastrau | Thomson Scattering @ FLASH | New Science Opportunities at FLASH | October 13th , 2011 | Page 3 -

Warm Dense Matter

after R.W. Lee

Prepare and Investigate Warm Dense Matter (WDM)

Hydrogen Temperature - Density Phase Diagram

Ulf Zastrau | Thomson Scattering @ FLASH | New Science Opportunities at FLASH | October 13th , 2011 | Page 5

Collective Thomson Scattering \rightarrow T_e, n_e

Temperature asymmetry via "detailed balance" relation:

$$\frac{S\left(k,\omega\right)}{S\left(-k,-\omega\right)} = e^{-\hbar\omega/k_B T_e}$$

 $S(\pm k, \pm \omega)$: Structure factor

(applies only in case of a *Maxwell-Boltzmann* equilibrium plasma)

A. Höll et al., HEDP 3, 120-130 (2007)

S. Glenzer and R. Redmer, Rev. Mod. Phys. **81**, 1625–1663 (2009)

Free-electron density via plasmon position by classical Gross-Bohm dispersion:

$$\omega_{res}^2\left(k\right) \approx \omega_{pe}^2 + \frac{3k_B T_e}{m_e}k^2$$

Generalized Gross-Bohm: R. Thiele et al., Phys. Rev. **E 78**, 026411 (2008) Local field corrections: Fortmann et al., PRE (2010); Neumayer at al., PRL (2010)

FLASH after upgrade

Free electron LASer Hamburg	
Photon energy	30-300 eV
\rightarrow Penetrates dense plasmas	
Pulse duration	~ 30-250 fs
\rightarrow Ultrafast processes	
Bandwidth	~1%
Max. pulse energy	~500 µJ
\rightarrow Scattering diagnostic	
Repetition rate	10 Hz
\rightarrow Accumulate events	
HIDRA Optical Laser	
Energy	20 mJ
Pulse duration	50 fs
Repetition rate	10 Hz

Ackermann et al., Nature Photonics 1, 336 (2007)

 \mathbf{O}

Jena

Ulf Zastrau | Thomson Scattering @ FLASH | New Science Opportunities at FLASH| October 13th , 2011 | Page 7

Liquid Hydrogen Beam

He cooled cryostat
<u>5</u> and 10µm droplets @ 17-22K, 1bar

Solid density: 4.2 10²²/cm³

FEL alignment Laser

Focused optical laser

Former published Results – "Self" Thomson Scattering

FEL: ~8.10¹³ W/cm² heats and scatters during the FEL pulse $S_{ii}(k) \sim 0 - \text{cold ions, warm free electrons}$

R. Fäustlin et al., Phys. Rev. Lett. **104**, 125002 (2010)

Iena

First results : FEL pump / FEL probe Thanks to operators B. Siemer and M. Woestmann, U Münster

R. Mitzner et al., Opt. Express 16, 19909 (2008)

Beam on the Ce-Yag screen before the interaction chamber

> ratio confirmed to be 1:1

- > Delay : -1 to 5ps
- > Overlap adjusted at -1, 0, 1, 2, 3, 4, 5 ps and interpolated in between

elastic ("Rayleigh") scattering increases with pump probe delay \rightarrow electron-ion equilibration time

New Experimental Setup (since October 2010)

FSP 301: Innovative XUV Instrumentation for FLASH

OL – FEL spatial & temporal overlap

- Ce-Yag screen + Long range Microscope for coarse spatial overlap
- Fast diode for coarse time overlap (~10 ps)
- Imaging system using plasma switch method for fine temporal and spatial overlap (jitter limited ~ 100fs)

Iena

First Results : OL pump - FEL probe

- Strong pump-probe effect in the Rayleigh scattered signal
 → electron-ion equilibration
- The two spectrometer signals peak at different times after excitation (peak at ~200 fs or ~2.5 ps)
- > → possible signature of **heat wave** or **strong absorption**

Ulf Zastrau | Thomson Scattering @ FLASH | New Science Opportunities at FLASH | October 13th , 2011 | Page 14

Approx. 500 000 single exposures: Data Analysis Scripting

The total integrated intensity over a specified scattered signal are plotted as a function of shot number \rightarrow 30 best shots in the series are marked by the triangles

Courtesy of L. Fletcher, ALS Berkeley

Ulf Zastrau | Thomson Scattering @ FLASH | New Science Opportunities at FLASH | October 13th , 2011 | Page 15 -

Challenges for this kind of experiments at FLASH

Central Data Aquisition Tool - Save all data by bunch ID

Measurement of incident FEL Spectra for every shot with 10 Hz

 \rightarrow we still observe a discrepancy between the FEL forecast and the experimental conditions (varying bandwidth and/or pulse length)

Reliable OL – FEL drift measurement by Streak Camera OL-FEL jitter measurement by TEO or other tool.

Powerful (pulse energy and menpower!) optical laser facility, 10Hz

Summary I

- We study warm dense hydrogen plasma, relevant for astrophysical phenomena, inertial fusion, and benchmark of theoretical models.
- > Innovative XUV, optical, and particle diagnostics has been developed.
- > Precise theoretical descriptions and powerful codes have been developed:
 - 2D-Hydro Code is under development
 - XUV absorption as function of density and temperature via DFT included
 - Rayleigh signal via Debye-Hückel description.

 \rightarrow will be extended to a two-temperature HNC formalism for better time dependence.

- > The experimental results are promising:
 - pump-probe measures of the scattered signal
 - for 20, 90, and 160° scattering angles
 - for various heating conditions (13.5nm, 800nm, pulse duration, energy...)

Summary II

-electron-ion equilibration times from the rising edge of the elastic scattering -temperature relaxation by expansion

- -differences between heating by IR laser and XUV FEL (homogeneity)
- -indication of inelastic scattering events
- Ion and PES TOF indicate OL heating: a partial explosion of droplets FEL heating: different oscillations in photo electron distribution.
- > Analysis of 500'000 individual spectra is going on in parallel with calculations.
- > Experimental Goal:

Measure elastic ("Rayleigh") and inelastic ("Plasmon") scattering signal with spectral, temporal, and angular resolution.