

Soft X-Ray Instrumentation at the European XFEL

M. Meyer & S. Molodtsov European XFEL GmbH

- Soft X-rays at the European XFEL
- Scientific Instruments in the Soft X-ray regime
 - **SQS Scientific Instruments**
 - **SCS Scientific Instruments**
- Infra-structure

optical laser, diagnostics, add-on equipment, time line

XFEL European X-ray Free Electron Laser

XFEL European X-ray Free Electron Laser

XFEL Electron and Photon beam transport systems

Undulators at the European XFEL

5

XFEL Les Instruments Scientifiques

XFEL Photon energy ranges

XFEL SASE 3 Undulator

General Soft X-Ray radiation parameters

Pulse widths	2 – 100 fs	Coherence time	0.3 – 1.8 fs
Pulse energy	0.2 – 11.0 mJ	Bandwidth	0.25 – 0.7 %
Peak power	50 – 120 GW	Number of photons	0.1 – 2 x 10 ¹⁴
Average power	3 – 300 W	Average flux of photons	0.3 – 5.4 x 10 ¹⁸
Beam size	40 – 80 μm	Average brilliance	0.03 – 2.6 x 10 ²⁴
Rep. rate	10 Hz (2700 pulses in bunch train)		

Parameter	Unit					
Bunch charge	рС	20	100	250	500	1000
Pulse duration (FWHM)	fs	2	9	23	43	107

European XFEL

Optical layout of the beam transport system (H. Sinn)

direct beam

- \rightarrow Small Quantum System (SQS)
- monochromatized
- → Spectroscopy @ Coherent Scattering (SCS)

SQS

"Small Quantum Systems" Scientific Instrument

10

XFEL Scientific Applications

SQS – Small Quantum Systems –

Investigation of atoms, ions, molecules and clusters in intense fields and non-linear phenomena

Non-linear phenomena, multi-photon **High intensities:** >10¹⁵ W/cm² Ultra-fast dynamics, pump-probe Short pulses: 2 - 100 fs **High flux** > 10^{12} photons / pulse Extremely dilute targets, Processes with small cross section $> 10^{15}$ photons / sec **Coherent Diffraction Imaging Spatial coherence** Threshold phenomena **Soft X-Ray** photon energies C(1s)=290 eV, N(1s)=410eV, O(1s)=560eV **International Workshop:** Aarhus, Denmark, October 29 - 31, 2008 Trieste, Italy, December 16 - 17, 2010

XFEL Two-color studies

Example: Two-color Pump-Probe

Optically induced electron interferences in the angular distribution

XFEL Ultra-fast processes

Diatomic molecules

molecules "fixed-in-space"

Complex Molecules

Ullrich et al. , ASG MPI Heidelberg

complete characterization = multiple coincidences

coincidences: 🛑

high (> kHz) repetition rate

XFEL SQS end-station

Gas phase targets:

- Molecular beam (atoms & molecules) supersonic jet, effusive jet, cells
- Cluster beam (mass-selected)
- Nano-particles, Nano-crystals, bio-molecules (aerosols, liquid jet)

Particle analyzers:

- High-resolution TOFs
- High resolution X-ray spectrometer
- Magnetic Bottle Electron Spectrometer
- Velocity-Map-Imaging
- Reaction Microscope
- Thomson Parabola

AQS (Atomic-like Quantum Systems) Chamber

NQS (Nano-size Quantum Systems) Chamber

XFEL SQS end-station

AQS - Chamber

XFEL SQS end-station

XFEL SQS end-station

NQS - Chamber

XFEL Optical Laser (M. Lederer)

Intra-Burst:

European

- 2700 pulses
- $f_{intra-burst} = 0.1...4.5 \text{ MHz}$
- 1mJ per pulse at 1MHz
- τ_{FWHM} = 10 ... 100fs
- \approx 10 fs jitter (rms)

Collaboration DESY, European XFEL, CFEL

"Burst Energy": ... 1J "Burst-Power": ... 1kW "Average Power": ... 10W

Pump-Probe Laser	Alignment Laser			
1 - 4.5 MHz rep. rate	100 kHz rep. rate			
0.2 – 1 mJ pulse energy	1 – 250 mJ pulse energy			
10 - 100 fs pulse duration	30 fs / 1 ns pulse duration			
< 10 fs synchronization	< 10 fs synchronization			

<u>Option</u>: 800 nm, 100 kHz, 20 – 100fs, 10mJ 1030 nm, 100 kHz, 1 ns, 250 mJ

SQS Specific

- OPA (200 3000 nm)
- variable polarization
- THz radiation
- beam characterization
- pulse stretcher

EuropeanXFELDiagnostics

FEL beam parameters for experiments

single shot / "on-line"

1. pulse energy: ± 1% (rel.)

Gas Monitor Detector (GMD)

2. arrival time: < 10fs

Reflectivity change (10 Hz),

THz – electron streaking

3. wavelength: $\Delta\lambda / \lambda = 10^{-3}$

Photoelectron Spectrometer

4. spectral profile: $\Delta\lambda / \lambda = 10^{-4}$

VLS-grating monochromator

single shot / "off-line"

- 5. pulse duration: ∆T = < 10 fs auto-correlator cross-correlation
- 6. spatial profile extended beam on CCD
- 7. temporal profile

N.N., THz electron streaking ?

8. beam position: 1 μm

YAG screens

SCS

"Spectroscopy & Coherent Scattering" Scientific Instrument

European XFEL

Optical layout of the beam transport system (H. Sinn)

direct beam

- \rightarrow Small Quantum System (SQS)
- monochromatized
- → Spectroscopy @ Coherent Scattering (SCS)

EuropeanXFELSCS Scientific instrument

Spectroscopy & Coherent Scattering (SCS)

International Workshop:

Villingen, Switzerland, June 2 - 4, 2009 Trieste, Italy, December 16 - 17, 2010

Spectroscopies (electron, photon)

Imaging, Dynamics & PCS: Bio & Nano Objects

Imaging, Dynamics & PCS: Magn. Systems

Scientific applications & experimental techniques:

- Electronic and atomic structure and dynamics solids, surfaces, nano-systems, biological objects
- X-ray spectroscopy (XAS, XES, IXS, RIXS, XPS), imaging (holography, CDI, XPCS); Pump-probe experiments

Variable polarization !!

VLS (Variable Line Spacing) Grating

European

XFEL Soft X-Ray Monochromator (H. Sinn)

Temporal Resolution

Final definiton of parameters and layout (in progress): H. Sinn, R. Follath, M. Izquierdo, J. Gaudin, S. Molodtsov,

XFEL Time-resolved RIXS

The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons M. Beye, F. Sorgenfrei, W. F. Schlotter, W. Wurth, A. Föhlisch, PNAS 2010 107 (39) 16772-16776

European **Electron Phonon Interactions**

Ultrafast melting of a charge density wave in the Mott Insulator 1T-TaS₂

-23

-24

Momentum-resolved X-ray Scattering

XFEL Spectroscopy at LCLS

Roll on – Roll off

EBIT

- A. Nilsson D. Nordlund
- H. Ogasawara

Ph. Wernet A. Föhlisch S. Techert

Femtosecond time-resolved x-ray emission spectroscopy of liquid samples

M. Meyer, NSO at FLASH, October 13, 2011

M. Meyer, NSO at FLASH, October 13, 2011

M. Meyer, NSO at FLASH, October 13, 2011

EuropeanXFELTimeline

SQS Instrument	https://www.xfel.eu/research/instruments/sqs
Conceptual Design Repo	ort April 2011
Technical Design Report	October 2012
SCS Instrument	
Conceptual Design Repo	ort Spring 2012
Technical Design Report	Spring 2013
Installation in experimenta	I hall mid 2014
Ready for beam	mid 2015

Thank you for your attention!