Tunfold Studies for Blindtest Status Report

Cipriano, Pedro; Flucke, Gero

Unfolding meeting 9 June 2011

Outline

- Unfolding Setup
 - True and Measured distribution
 - Response matrix
 - Unfolding with Tunfold for smearing = bin width
 - Correlations
- Methods
- TUnfold
 - Brief explanation on the different Modes
- Quality of the result
 - Correlations
 - Pull
 - Chi²
- Comparing Different Methods
- Conclusion
- Plans

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest

True and measured

- True obtained from 10⁵ dices of a Double BreitWigner function
- Measured obtained from true by applying to each event a Gaussian smearing with a width = 0.5, no bias and an acceptance = $1 ((x 10)^2 / 36)$
 - Number of Measured bins = 48 (bin width = 0.25)
 - Number of True bins = $24 \rightarrow$ bin width = 0.5 (Nikolai proposed bin width = 0.4)

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 3/23

Response Matrix

- True obtained from 10⁶ dices of a flat function
- Smearing, bias, acceptance and binning as set for the measurement

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 4/23

08/06/2011

Unfolding with Tunfold for smearing = bin width

- Software: RooUnfold 1.0.3
- Unfolding Algorithm: TUnfold
- Regularization mode : KregModeSize

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 5/23

08/06/2011

Bin Correlations

• Neighbour bins almost 100% correlated

- Sign of R alternates for further neighbours
 - The absolute value of R decreases

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 6/23

Methods Summary

- Testing:
 - Other smearing values
 - Different regularization modes
- Software: RooUnfold 1.0.3
- Unfolding Algorithm: TUnfold
- Regularization modes : KregModeSize, KregModeDerivative and KregCurvature
- Number of unfolding tries = 10^4
- Number of measured events = 10⁵
- Number of training events = 10^6
- Number of Measured bins = 48
- Number of True bins = 24
- Smearing values = {0.3, 0.5, 0,7}
- Displacement = 0.0
- Acceptance : $1 ((x 10)^2 / 36)$

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 7/23

Tunfold: Methods

- TUnfold solves the inverse problem:
- $chi^2 = (y-Ax)^T Vyx^{-1} (y-Ax) + r^2 (L(x-x0))^T L(x-x0) + \lambda sum_i(y(i) Ax(i))$
 - y: vector of measured values
 - Vyx: covariance matrix for y
 - A: response matrix
 - x: unknown underlying distribution
 - г: parameter, defining the regularisation strength
 - L: matrix of regularisation conditions
 - x0: bias distribution
 - λ: lagrangian multiplier
 - y(i): one component of the vector y
 - Ax(i): one component of the vector Ax
 - The $\boldsymbol{\lambda}$ term was not used in this study

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 8/23

08/06/2011

The different TUnfold regularization modes

- 4 different regularization modes are available on Tunfold:
 - KRegModeNone \rightarrow No regularization
 - KRegModeSize
 - minimize the size of (x-x0)
 - usally is the one present in the literature
 - the bias x0 usually is not present
 - KregModeDerivative
 - minimize the 1st derivative of (x-x0)
 - Create positive correlations between bins
 - KregModeCurvature
 - minimize the 2nd derivative of (x-x0)
 - Create positive correlations between bins

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 9/23

KregModeSize **Unfolded Result**

Bin width = 0.5

Unfolding with a smearing smaller than bin width seems to give decent results

For bigger values large errors appear and there are a significant deviation from the True values

Smearing = 0.7

h_24_true

100000

9.995

2.519

5980

5812

Entries

Mean

RMS

Underflow

Overflow

8000

6000

4000

2000

08/06/2011

Bin Correlations

 Correlations smear out with the increase of the smearing value

11/23

Cipriano, Pedro; Flucke, Gero

08/06/2011

Chi²

- Expected mean value : 1
- Small smearing values tend to have a higher value of chi²

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 12/23

Unfolding Group Chi² Probability

08/06/2011

- Flat distribution expected
- Peak under $0.5 \rightarrow$ the fit is too bad

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 13/23

Pull example

- Pull = (Unfold True)/Sigma
 - Bin Number: 24
- Pull distribution for each bin is Gaussian shaped

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 14/23

RMS of the Pull

- Expected flat = 1 distribution
- No significant deviation found

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 15/23

08/06/2011

Pull Distribution

- Biases up to 1sigma
- Alternating sign between neighbors
 - Bigger smearing \rightarrow less pull

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 16/23

08/06/2011

Bin Correlations, Smearing =

Cipriano, Pedro; Flucke, Gero

0.5

- Different regularization modes tested
 - Patterns change with the mode used

Tunfold studies for Blindtest 17/23

Chi² distribution

- Chi² divided by degrees of freedom
 - Expected mean value : 1
- No significant change due to the regularization mode

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 18/23

Chi² probability

- Peak under $0.5 \rightarrow$ the fit is too bad
- No significant differences between the methods

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 19/23

RMS of the Pull

- Expected flat = 1 distribution
- Derivative and Curvature modes are not so flat
 as the Size

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 20/23

Pull distribution

- Alternating sign between neighbors
- No significant change between regularization modes

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 21/23

Summary

- Several smearing values had been tested
 - The mean value of Chi2 tends to the expected values as the smearing decreases. Why?
- All the regularization modes of TUnfold had been compares for smearing = 0.5
 - Correlations change between modes
 - Chi2 and Pull do not show significant differences between the modes, except for Pull RMS
- Clearly the aim for a bin width smaller than Gaussian smearing is too ambitious

Cipriano, Pedro; Flucke, Gero Tunfold studies for Blindtest 22/23

Plans

- Discuss this results with Stefan Schmidt (TUnfold creator)
- Look at C curve
- Try to understand/use λ -term
- In principle ready for the blind test