

Tomography with Fast Neutrons

Aenne Abel, Master's Project Silicon Detector R&D Meeting | 18.06.2024 III. Physikalisches Institut B, RWTH Aachen University

Tomography – Non-destructive View Inside Object

Radiographic image

Tomographic image

Reconstruction Process

- Measure reference counts without object I₀
- Measure counts with object I
- Assume exponential law

$$\vec{b} = -\ln\left(\frac{I}{I_0}\right) = \int \mu(x, y) ds$$

- Interpret problem as matrix equation: $\vec{b} = A\vec{x}$
- A: Weight of beam going through element \vec{x}
- Minimization problem for \vec{x}
- Simultaneous Iterative Reconstruction Technique (SIRT) with ASTRA Toolbox

Why use Neutrons?

Measurement Setup

$$^{241}\mathrm{Am}
ightarrow^{237} \mathrm{Np}^* + lpha
ightarrow^{237} \mathrm{Np} + \gamma (59.5 \text{ keV}) + lpha$$
 $lpha + ^9 \mathrm{Be}
ightarrow^{12} \mathrm{C}^* + \mathrm{n}
ightarrow^{12} \mathrm{C} + \gamma (4.44 \text{ MeV}) + \mathrm{n}$

Detector

- (Trans-)Stilbene crystals (5 × 5 × 25) mm³
- Reflective foil ESR
- Coupling pad from PLA filled with elastosil
- SiPM Hamamatsu MPPC array
- PCB for power supply and amplification

Pulse Shape Discrimination (PSD)

Particle	$\tau_{\rm fast}$ in ns	$\tau_{\text{intermediate}}$ in ns	$\tau_{\rm slow}$ in ns
Neutron	5,01~(95%)	27,70~(4%)	$253,\!19~(1\%)$
Gamma	$5,\!21~(95\%)$	$21,\!33~(3\%)$	137,77 (2%)

- Measure integral over whole pulse Q_{total}
- Measure integral over tail part of the pulse Q_{tail}
- PSD variable $\frac{Q_{tail}}{Q_{total}}$ in general higher for neutrons

Simulation Realistic Detector

- Up until now, PSD not possible in simulation
- Separation over quenching effect

8 of 27 Simulation Studies for Tomography with Fast Neutrons Silicon Detector R&D Meeting Aenne Abel | RWTH Aachen | 18.06.2024

 $S \frac{\mathrm{d}E}{\mathrm{d}x}$

 $-\frac{1}{1+kB\frac{\mathrm{d}E}{\mathrm{d}x}}$

 $\mathrm{d}L$

 $\overline{\mathrm{d}x}$

Detector Simulations

Detector Simulations

Generating Particle Counts with GEANT4

Reconstruction Steps

Quality Criteria Objects

- Simulate objects with realistic detector
- Four or five object positions

E-like Object

- Fit single error function $f(x) = \frac{A}{2} \cdot erf\left(\frac{x-\mu}{\sigma}\right) + c$ to edge of E
- Use parameter specifying edge width σ
- Resulting $\sigma = (1.91 \pm 0.04)$ mm

Siemens Star

• Determine radius at which segments are no longer distinguishable

Extracting Values for the Analysis

- Extract absorption values along a circle with radius r from tomography image
- $r \cdot \pi$ Calculate spatial resolution from radius by • n_{Segments}
- Fit one peak/segment with or w.o. offset

Simulation Studies for Tomography with Fast Neutrons 16 of 27 Silicon Detector R&D Meeting Aenne Abel | RWTH Aachen | 18.06.2024

-5.0

-3.0

Comparison Values Cut Radius Sigma Criteria

- Width criterion looks closer into the Siemens star absorption values not smooth
- · Sigma criterion limited by absorption values moving closer together

Resolution Box

- Cube 5x5x5 cm with differently sized holes
- 5-6 mm diameter holes visible
- 8 mm diameter hole with absorption dropping to ~0 1/cm

Test object	Spatial resolution	Cut radius	Edge width
Resolution box	$5-6\mathrm{mm}$	-	_
Siemens star - sigma criteria	$7.6\mathrm{mm}$	$2.9\mathrm{cm}$	$(4.80 \pm 0.10) \mathrm{mm}$
Siemens star - width criteria	$(5.3\pm0.5)\mathrm{mm}$	$(2.01 \pm 0.17) \mathrm{cm}$	$(1.9 \pm 0.6) \mathrm{mm}$
Ε	-	-	$(1.91\pm0.04)\mathrm{mm}$
-4.0 -2.0 -0.12 U -0.10 U -0.00 U -0.0	-5.0 -3.0 -3.0 -5.0 -1.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5	-0.10 U -0.08 U -0.08 U -0.06 u -0.04 U -0.02 U -0.02 U -0.02 U -0.00 U -0.02 U -0.00 U -0.00 U -0.02 U -0.00	0.12 U 0.10 U 0.10 U 0.00 U

• Enables the evaluation of other detector geometries (e.g. 5x3 pixel)

Siemens Stars – Varying nSegments

Comparison different nSegments

Spatial Resolution - nSegments

Matching Detector Pixel Positions to Segments

Siemens Stars – Realistic Detector

- Evaluate influence of object positions for images of Siemens stars
- Use four or five object positions
 x
 y
 y

Siemens Stars with Shifted Object Positions

Measurements Siemens Star

- Material of segments alternate between aluminium and PVC
- · Four measured object position with interpolation for no shift

Summary and Outlook

- Created tomographic images with neutrons and gammas simultaneously
- Particles and detector responses simulated with GEANT4, tomographic reconstruction done with ASTRA Toolbox
- Developed quality criteria for three different objects
- Object positions can heavily influence image quality
- Possibility to investigate new detector arrangements for larger detector (8x8 or 5x3)
- Try slightly distorted setups

Appendix

Comparison Detector Variations

•

crystals

Generating Particle Counts with GEANT4

Siemens Star – Sigma Criterion

• Fit two sided error function without offset to segment

$$f(x) = \frac{A}{2} \left(erf\left(\frac{x-\mu+b}{\sigma}\right) - erf\left(\frac{x-\mu-b}{\sigma}\right) \right)$$

data

A = 0.1175 + - 0.0011 1/cm

 $\mu = 0.0017 + - 0.0004$ rad

b = 0.1352 +/- 0.0011 rad σ = 0.1052 +/- 0.0016 rad

0.2

0.1

- Determine relative error on sigma parameter
- This image: Cut radius 2.9 cm, spatial resolution 7.6 mm
- Resulting $\sigma = (4.80 \pm 0.10)mm$

-0.2

Macroscopic absorption in 1/cm

0.10

0.08

0.06

0.04

0.02

0.00

2

radius in cm

15 of 27 Simulation Studies for Tomography with Fast Neutrons Silicon Detector R&D Meeting Aenne Abel | RWTH Aachen | 18.06.2024

0.0

Angle in radians

-0.1

1

err_a/a

3

Siemens Star – Width Criterion

Fit two-sided error function with offset to segment •

$$f(x) = \frac{A}{2} \left(erf\left(\frac{x-\mu+b}{\sigma}\right) - erf\left(\frac{x-\mu-b}{\sigma}\right) \right) + c$$

- Use width of segment b ٠
- This image: Cut radius 2.0 cm, spatial resolution 5.3 mm •
- Resulting $\sigma = (1.9 \pm 0.4(stat.) \pm 0.4(sys.))mm = (1.9 \pm 0.5)mm$ •

Simulation Studies for Tomography with Fast Neutrons 16 of 27 Silicon Detector R&D Meeting Aenne Abel | RWTH Aachen | 18.06.2024

-5.0

-3.0

E ^{-1.0} .⊑ ≈ 1.0 1.0

3.0

5.0

-5.0

-3.0

-1.0

1.0 x in cm

-0.10 ^E

macroscopic apsorbtion in

0.00

5.0

3.0

Dependency of the Resolution from the Detector Bin Width

- Find spatial resolution for multiple detector bin widths
- Spatial resolution of 10 mm corresponds to maximum radius of Siemens Star

Outliers in Resolution

• If segments of Siemens Star fit well with binning, resolution gets unexpectedly fine

Error Function Fit

• Fit function: $\frac{A}{2}\left(erf\left(\frac{x-\mu+b}{\sigma}\right) - erf\left(\frac{x-\mu-b}{\sigma}\right)\right)$

Error Function Fit, Finer Binning

Americium-Beryllium Source

- AmBe source (4.44 MeV gammas, ISO8529 spectrum for neutrons)
- Separation of gammas and neutrons possible with stilbene via Pulse Shape Discrimination (PSD)
- Simultaneous measurements with gammas and neutrons possible

Manipulated Detector

- · Goal: Find detector setup which increases detector resolution significantly
- Simulate different detector setups and determining the change in resolution
- Central parameters
 - Number of detector pixel in x and y
 - Number of object positions
 - Overlap of object positions
 - Size of detector pixel
 - Material of detector pixel

Physics GEANT4

- Use high precision neutron package
- HP package settings:
 - Skip missing isotopes: True
 - Do not adjust final state: True
 - Use Only Photo Evaporation: False
 - Neglect Doppler: False
 - Produce fission fragments: False
 - Use Wendt fission model: False
 - Use NRESP71 model: True

