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3 How AdS/CFT works

The equivalence of N = 4 SYM and type IIB string theory in AdS5 ⇥ S5 should imply an equality

between their respective path integrals. On the the gauge theory side, we ought to be able to

include gauge invariant sources in the path integral. On the gravity side, AdS5 is a space with

boundary (at z = 0 in the parametrization (25)). Thus to be well defined, we need to include

boundary conditions. Consider probing the stack of D3-branes with wave packets sent in from the

asymptotically flat part of the D3-brane geometry. From the near horizon point of view, these

wave packets look alternately like sourcing gauge invariant operators on the D-branes or like setting

boundary conditions for the AdS5 space-time. This line of reasoning leads to the central postulate

of the AdS/CFT correspondence, a result [2, 3] whose importance can not be over emphasized:

eWCFT[�0] ⌘
⌧
exp

Z
d4x�0(x)O(x)

�

CFT

= Zstring

⇥
�(x, z)|z!0 = �0(x)

⇤
. (33)

In this expression �(x, z) is a field on the string side of the story. Its boundary value �0(x) can

alternately be interpreted as a source for a gauge invariant operator O(x) in the conformal field

theory. The CFT quantity WCFT is then a generating functional for connected correlation functions

of O(x) in the CFT.

While the correspondence (33) is expected to hold true in general, we will be interested in it

primarily in the limit gs and `s/L ! 0. In field theory terms, this double limit is g2
YM

N and

N ! 1. Given that we are working in AdS5 with a scale set by the radius of curvature L, we can

first replace Zstring by the corresponding supergravity partition function ZSUGRA. Then the e↵ective

gravitational coupling constant in the supergravity action (8) we can identify as

(2⇡)7g2s`
8

s

L8
=

8⇡2

N2
Vol(S5) . (34)

Because N is large, a saddle point approximation of ZSUGRA ⇠ e�Sos becomes accurate. (We work

in Euclidean signature here.) In other words, the on-shell gravitational action Sos[�0] (i.e. the action

evaluated using the equations of motion) is a good approximation to the generating functional,

WCFT[�0] ⇡ �Sos[�0]. We can therefore use classical gravity to compute connected correlation

functions in the CFT in the limit N ! 1.

We would like to explore the consequences of the postulate (33) for a free scalar field. Consider

then the action for a real scalar in the Poincaré patch of (Euclidean) AdSd+1:

S =
1

2

Z
dd+1x

p
�g

h
(@�)2 +m2�2

i
. (35)

We focus here just on the AdSd+1 geometry and use the line element

ds2 = L2


�µ⌫dxµdx⌫ + dz2

z2

�
. (36)

To produce a generating function for the CFT correlation functions, we need to evaluate this action

on-shell with a prescribed boundary condition for � at z = 0. To that end, let us start with the
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equation of motion for �:

�
zd+1@zz

�d+1@z + z2⌘µ⌫@µ@⌫ �m2L2
�
� = 0 . (37)

Typically boundary conditions for second order di↵erential equations are either Dirichlet or Neu-

mann. Here, however, z = 0 is a singular point, and the boundary behavior is described instead by

two characteristic exponents which satisfy the following indicial equation:

�(�� d) = m2L2 , (38)

as can be seen by plugging � ⇠ z� into the equation of motion (37) and expanding the result near

z = 0. Generically, one finds the following behavior for � near z = 0:

� = azd��(1 +O(z2)) + bz�(1 +O(z2)) . (39)

(Interesting issues arise when � is an integer and the series overlap. Extra logarithmic terms appear

which we shall ignore.) If we assume � > d/2, then a describes the leading small z behavior and

we can tentatively identify a = �0 with the source term in the CFT. The singular behavior at z = 0

means we should really work with a z = ✏ cuto↵ and modify the basic statement (33) to include an

✏ dependence, �|z=✏ = �0✏d��, taking the ✏ ! 0 limit only at the end.

Given that the boundary z = 0 is a singular point and we cannot use typical Dirichlet or Neumann

boundary conditions, it is not obvious that the action (35) has a well defined variational principle.

In varying the action, we are left with the following boundary term

�S = �
Z

z=✏
ddx

✓
L

z

◆d�1

��(x, z)@z�(x, z) (40)

= �Ld�1

Z

z=✏
ddx

1

zd
(�a zd�� + �b z� + . . .)(a(d��) zd�� + b� z� + . . .)

= �Ld�1

Z

z=✏
ddx

⇥
(d��)a �a zd�2� + (� �a b+ (d��) �b a)

+� b �b z2��d + . . .
⇤
.

There are really three potentially overlapping power series in the last line. The boundary variation

(40) includes only the leading term in each power series; the ellipses denote the subleading terms. In

the context of the variational principle, we fix the boundary behavior a = �0. Thus, we insist that

�a = 0. There remains a term proportional to �b a which we need to cancel through the addition of

a boundary term. (The b �b term will vanish given our assumption that 2� > d.) We add

Sbry =
c

L

Z

z=✏
ddx

p
�� �2(x, z) (41)

where �µ⌫ is the induced metric on the z = ✏ slice of the geometry, and c is a constant to be

determined. The choice of counter-terms is guided by the requirements that Sbry be local, Lorentz

invariant, and depend only intrinsically on the geometry of the boundary. One could imagine also

terms of the form �⇤� and �⇤2� where ⇤ = ⌘µ⌫@µ@⌫ or even, in the case of a curved boundary,

10



R�2 where R is the Ricci scalar curvature of the boundary. By dimensional analysis, these higher

derivative terms must come with additional powers of z and cannot cancel the leading a �b term.

Given the boundary term (41), the variation is then

�Sbry = 2cLd�1

Z

z=✏
ddx

⇥
a �a zd�2� + (a �b+ b �a) + b �b z2��d + . . .

⇤
, (42)

To cancel the a �b term in (40), we should set the constant c = (d��)/2.

Having ensured that the on-shell value of the action is indeed an extremum, and thus that the

saddle-point approximation is sensible, we can ask what the response of the system is to small

changes �a in the source term. The calculation is essentially already done. The leading a �a term

cancels and one finds

�Stot = �S + �Sbry = Ld�1

Z

z=✏
ddx (d� 2�)b �a . (43)

The expectation value of the operator dual to � then follows from the basic postulate (33):

hOi = ��Stot

��0

= ��Stot

�a
= Ld�1(2�� d) b . (44)

We have come to a second omission in the discussion. The ellipses in the variations (40) and

(42) contain subleading terms in the a �a series which may be dominant compared to the b �a term

considered in (43). In general, we require further counter-terms to cancel these subleading a �a pieces

and to prevent hOi from being UV divergent. As an example, one may consider the subleading term

in the a �a series, proportional to zd�2�+2�a⇤a. Assuming 2� > d + 2, this term is dominant

compared to b �a, but it can be canceled by adding a �⇤� boundary term to the action. That these

counterterms can be identified in general and that hOi can be renormalized is discussed in more

detail in for example ref. [8]. The procedures described above for scalar fields can be generalized for

higher spin fields. These techniques usually go by the name of “holographic renormalization”.

Note that the characteristic exponent � is also the scaling dimension of the operator O. The

transformation rule x ! ⇤x and z ! ⇤z is a symmetry of the line element (36) and of the geometry

of AdSd+1. The restriction of the scaling symmetry to the boundary z = 0 corresponds to scale

transformations of the CFT. Under this scale transformation, the field � transforms as �0(z, x) =

�(⇤z,⇤x). Thus we find that

hO0i = ⇤�hOi . (45)

Primary scalar operators in CFT satisfy a unitarity bound [9], � > (d� 2)/2, saturated by the

free field case. The assumption � > d/2 thus leaves out a set of operators with scaling dimension

in the range (d � 2)/2 < � < d/2. To close this gap, let us now assume that � < d/2 and repeat

the exercise we went through above. We still freeze the value of a and thus set �a = 0. Now, in

addition to canceling the a �b term in the variation (40), we also need to cancel the b �b term, which

no longer vanishes in the limit z ! 0. Breaking from our rule that counterterms should depend only

on the intrinsic geometry of the boundary, we add a Gibbons-Hawking like term that depends on a
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Figure 1: A plot of the scaling dimension � of O versus the mass m of the AdSd+1 scalar �.

normal derivative

Sbry =

Z

z=✏
ddx

p
��

⇣ c

L
�2 + c0nµ�@µ�

⌘
. (46)

where c and c0 are constants and nµ = (0, z/L) is a unit normal to the boundary. We leave it as an

exercise to show that c0 = 1 and c = ��/2 for a good variational principle. Just as we did earlier,

we can then consider the response of the system to a small �a. We find that hOi = Ld�1(2�� d) b,

just as before. In the window (d� 2)/2 < � < d/2, there are no subleading divergences in the b �b

series, and no further counter-terms are needed.

The set of scalar fields considered in this lecture is summarized pictorially in figure 1. The point

� = d/2 where the curve turns around is known as the Breitenlohner-Freedman (BF) bound. It is

the smallest mass-squared for a scalar field in AdSd+1 that allows for a sensible stress-energy tensor

[10, 11].

While for simplicity, we have focused on the simplest case of the Poincaré patch, the techniques

here generalize to situations where the space is only asymptotically, in the limit z ! 0, of AdS type.

From a CFT point of view, this restriction on the asymptotics means keeping the UV behavior of

the field theory the same. One could imagine, for example, providing a nonzero source �0 6= 0 for

a relevant operator � < d, in which case the large z (i.e. low energy) geometry will generally be

modified. The small z asymptotics remain the same, and now we may calculate correlation functions

in the presence of the source. On the other hand, if we add a source for an irrelevant operator � > d,

the small z (i.e. high energy) geometry will be modified and the preceding results can no longer be

applied.
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3.1 Scalar Two-Point Functions in Pure AdSd+1

Above, in expanding the field �(x, z) near the boundary

�(x, z) = zd��a(1 + . . .) + z�b(1 + . . .)

and positing a = �0, we found that the one-point function hOi ⇠ b was determined by the coe�cient

of the second series. Here, we will use a second boundary condition to find a relation between b and

the source a. Given that relation, we can then compute a two-point correlation function hOOi by

varying hOi with respect to a = �0.

In pure AdSd+1, we can find an explicit solution of the equations of motion (37) for the scalar

field. We first make a plane wave ansatz, � ⇠ ek·x�(z). The equation of motion simplifies to an

ordinary di↵erential equation

zd+1(z1�d�0)0 � (z2k2 +m2L2)� = 0 , (47)

where 0 denotes @z. Next, we make the substitution �(z) = zd/2H(z),

z2H 00 + zH 0 �
✓
k2z2 +m2L2 +

d2

4

◆
H = 0 , (48)

and recognize a second order di↵erential equation of Bessel type. In the Euclidean or space-like case

where k2 > 0, we find a solution in terms of Hankel functions:

H = c1H
(1)

⌫ (ikz) + c2H
(2)

⌫ (ikz) , (49)

where we have defined ⌫ ⌘
p
m2L2 + d2/4. To fix the second boundary condition, consider the large

z behavior where H(1)

⌫ (ikz) ⇠ e�kz and H(2)

⌫ (ikz) ⇠ ekz, allowing us to set c2 = 0 and throw out

the second, exponentially growing solution.

To extract the two-point function, consider the small z expansion of the solution, assuming

� > d/2 and that ⌫ is not an integer,

� = c1


zd��

✓
� i

⇡

✓
2

ik

◆⌫

�(⌫) + . . .

◆
+ z�

✓✓
ik

2

◆⌫ 1 + i cot(⇡⌫)

�(1 + ⌫)
+ . . .

◆�
. (50)

From the leading and subleading coe�cients of the series expansion, we can read o↵ the values of

�0 and hOi:

�0 = c1

✓
� i

⇡

◆✓
2

ik

◆⌫

�(⌫) , (51)

hOi = (2�� d)Ld�1c1

✓
ik

2

◆⌫ 1 + i cot(⇡⌫)

�(1 + ⌫)
. (52)

The (Fourier transform of the) two-point function can then be extracted by varying the one-point

function:

GOO(k) =
�hOi
��0

=
hOi
�0

= (�2⌫)

✓
ik

2

◆2⌫

(i⇡)
1 + i cot(⇡⌫)

�(⌫)�(1 + ⌫)
Ld�1 (53)
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We need now to Fourier transform back to position space. Focusing on the k2⌫ = k2��d behavior,

note that by translational symmetry and dimensional analysis, the only possible result is that

hO(x2)O(x1)i =
Z

ddk

(2⇡)d
GOO(k)eik·(x2�x1) ⇠ 1

|x2 � x1|2�
. (54)

Two-point functions in CFT are indeed constrained to have precisely this form.

3.2 Gauge fields in the bulk, global symmetries in the boundary

Having gained some experience with scalar fields, we move on to gauge fields in AdSd+1, which

in the context of the holographic renormalization are actually somewhat simpler, requiring fewer

counter-terms. Consider the following abelian gauge field in the bulk:

S = � 1

4e2

Z
dd+1x

p
�gFABF

AB . (55)

The equations of motion are simply @A
p
�gFAB = 0. To keep the discussion simple, we pick a

radial gauge Az = 0. The equations of motion @A
p
�gFAµ expand, using the line element (36), to

give

@zz
3�d@zAµ + z3�d@�⌘

�⌫F⌫µ = 0 . (56)

In analogy to the scalar discussion, we consider a small z expansion of the gauge field, Aµ ⇠ z�.

The corresponding indicial equation

�(�+ 2� d) = 0 , (57)

has the two roots � = 0 and � = d� 2, leading to the following small z series solution

Aµ = aµ(1 + . . .) + bµz
d�2(1 + . . .) . (58)

We should also consider the remaining equation of motion @A
p
�gFAz = 0 which expands to give

@µz
3�d@z⌘

µ⌫A⌫ = 0 . (59)

Inserting the small z series solution into this equation of motion produces the constraint @µ⌘µ⌫b⌫ = 0.

In other words, ⌘µ⌫b⌫ satisfies a current conservation condition.

In determining the equations of motion, we produced a boundary term which we now consider

more carefully:

�S =
Ld�3

e2

Z

z=✏
ddx z3�d⌘µ⌫�Aµ@zA⌫ (60)

=
Ld�3

e2

Z

z=✏
ddx z3�d⌘µ⌫(�aµ + �bµ z

d�2)((d� 2)b⌫z
d�3 + . . .) (61)

=
Ld�3

e2

Z

z=✏
ddx (d� 2)⌘µ⌫�aµ b⌫ . (62)

To get a good variational principle, where we set �aµ = 0, we need no further counter-terms. To

extract the one-point function however, we may find that even though the leading a �a term cancels

14



because of the @z derivative, there could be subleading divergences that are nonetheless dominant

compared to the �a b term. In fact the situation here is further complicated by the fact that d � 2

is integer and the two series may overlap, generating logarithms. There is a z ! �z symmetry of

the equations of motion which implies that the series expansion is in even powers of z. Thus, the

series only overlap when d is an even integer. While in d = 3, we may take the variation (62) at face

value, in d = 4 a logarithmic singularity appears which requires more careful treatment. In d > 4,

there can be further complications. Ignoring these gritty details, we take the variation (62) at face

value and compute the one-point function:

hJµi = �S

�aµ
=

(d� 2)Ld�3

e2
⌘µ⌫b⌫ . (63)

We are now in a position to identify the operator Jµ. From the point of view of the CFT, it is

sourced by an external gauge field aµ and satisfies a current conservation condition @µJµ = 0. Thus

it must be a conserved current. Note that aµ is not dynamical both from the gravity and CFT point

of view.

3.3 The stress tensor

The stress-tensor operator in the CFT is one of the more di�cult fields to study through AdS/CFT

but also one of the most useful and interesting. It naturally couples to the boundary value of the

metric. To analyze this case, let us first set some notation. The bulk metric shall be GAB . We will

pick a gauge where the line-element is

ds2 =
L2

z2
dz2 + �µ⌫dx

µdx⌫ , (64)

where �µ⌫ is the boundary metric. We further define

gµ⌫ ⌘ z2

L2
�µ⌫ . (65)

In general, gµ⌫ will have a nontrivial z dependence which we can write for small z as

gµ⌫ =

8
><

>:

g(0)µ⌫ + z2g(2)µ⌫ + . . .+ zdg(d)µ⌫ + zd+2g(d+2)

µ⌫ + . . . , odd d

g(0)µ⌫ + z2g(2)µ⌫ + . . .+ zdg(d)µ⌫ + zd log z h(d)
µ⌫ + . . . , even d

(66)

Note that the CFT metric is not gµ⌫ but the boundary value g(0)µ⌫ . The full tensor structure gµ⌫

contains more information, as we will see.

Given the earlier discussion of scalars and gauge fields, we can anticipate that the action will

contain a bulk contribution, a boundary contribution to have a good variational principle, and

further counter-terms to render the correlation functions finite:

S = SEH + SGH + Sctr . (67)

The bulk term is Einstein-Hilbert plus a negative cosmological constant, required so that AdSd+1 is

a solution of the equations of motion:

SEH =
1

22

Z

M
dd+1x

p
�G

✓
R+

d(d� 1)

L2

◆
. (68)
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However, anti-de Sitter space has a boundary and second derivatives R ⇠ @2GAB in the action will

generate boundary terms of the form @A(�gBC) which need to be canceled. The standard procedure

is to add a Gibbons-Hawking term

SGH =
1

2

Z

@M
ddx

p
��K , (69)

where K = GABrAnB is the trace of the extrinsic curvature and nB is an outward pointing unit nor-

mal vector. Such a boundary term will cancel normal derivatives of the metric variation nA@A(�gBC).

The variation of the Einstein-Hilbert term gives

�SEH =
1

22

Z

M
dd+1x

p
�G(�RAB)G

AB +
p
�GRAB�G

AB +

✓
R+

d(d� 1)

L2

◆
�(
p
�G)

�
. (70)

The variation of the second two terms produces Einstein’s equation, which vanish on-shell. The

variation of the Ricci tensor is a covariant derivative

�RAB = �(��C
AC);B + (��C

AB);C , (71)

a result sometimes known as the Palatini identity. Inside the action, this variation becomes a total

derivative

p
�GGAB�RAB = �(

p
�GGAB��C

AC),B + (
p
�GGAB��C

AB),C (72)

Skipping some steps which we will flesh out in the next section, this total derivative reduces to the

boundary term

�SEH = � 1

22

Z

@M
ddx

p
��

�
nA�CD�GCD;A �KnAnB�GAB +KAB�GAB

�
. (73)

Meanwhile, varying the Gibbons-Hawking term leads to

�SGH =
1

2

Z

@M
ddx

⇥p
�� �K �K �(

p
��)

⇤
. (74)

Again skipping some steps, the variation of the extrinsic trace produces

�K =
1

2
�CD�GCD;An

A � K

2
nAnB�GAB .

Assembling the pieces, the boundary variation is then

�SEH + �SGH = � 1

22

Z

@M
ddx

p
��(Kµ⌫ �K�µ⌫)��µ⌫ (75)

where KAB = r(AnB). Thus the “bare” stress tensor will be5

(Tbare)
µ⌫

p
�g(0)

2
=

�S

�g(0)µ⌫

= �Ld+2

22

p
�g

1

zd+2
(Kµ⌫ �K�µ⌫) . (76)

This stress tensor appears in the early AdS/CFT paper [12]. The factor of z�d�2 in this expression

suggests that the bare stress tensor may be divergent. Indeed, combined with an inverse metric

5In Lorentzian signature, conventionally the variation of the action is proportional to the stress tensor. In Euclidean,

there should be a relative minus sign. We are implicitly working in Lorentzian signature here.
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factor �µ⌫ , there will in general be divergent terms starting at order z�d. These terms need to be

regulated. The form of the counter terms in d  6 is

Sctr =
1

2

Z

@M
ddx

p
��


d� 1

L
+

L

2(d� 2)
R+

L3

(d� 4)(d� 2)2

✓
Rµ⌫Rµ⌫ � d

4(d� 1)
R2

◆
+ . . .

�
. (77)

The Ricci tensor Rµ⌫ is computed with the boundary metric �µ⌫ . We include as many of these

counter-terms as are necessary to cancel the divergences. A term of the form
p
��Rn can cancel a

divergence of order z�d+2n. As a result, we need to include counter terms up to but not including

O(Rd/2) to cancel potential divergences. (In even d, there is an ambiguity in the definition of

the stress tensor that comes from including terms of precisely O(Rd/2). This ambiguity parallels a

similar ambiguity on the the field theory side. In d = 4, for example, there is an analogous ambiguity

in the coe�cient of the ⇤R term in the trace anomaly.) In AdS3, only the first term is needed. For

AdS4 and AdS5, the first and second are needed. The second term proportional to R can be thought

of as an analog of the �⇤� counter term we needed for the scalar field. For AdS6 and AdS7, all

three are needed, and higher order terms we have not written down would need to be constructed

to regulate the divergences in d > 6.

Deriving the Boundary Stress Tensor

Similar discussions to the following can be found in textbooks on general relativity, for example

appendix E.1 of Wald’s book. However, in most of the general relativity literature, the variation

of the metric on the boundary is set to zero, �GAB |z=0 = 0. Like in the the case of the scalar

we studied before, we would like to discover the response of the system to small variations in the

boundary value of �GAB . Thus we need to redo the classic textbook calculations, keeping a nonzero

value for the metric fluctuations on the boundary.

We begin by studying the term proportional to �RAB in the variation of the Einstein-Hilbert

action (70). Using that �RAB becomes a total derivative (72) inside the integral, the variation (70)

becomes

�SEH = � 1

22

Z

@M
ddx

p
��

⇥
GAB��C

ACnB �GAB��C
ABnC

⇤
(78)

= � 1

22

Z

@M
ddx

p
��GABGCD (�GCD;AnB � �GAD;BnC) (79)

= � 1

22

Z

@M
ddx

p
�� nAGCD (�GCD;A � �GCA;D) . (80)

We can write the boundary metric as an operator �AB = GAB � nAnB that projects onto the

subspace orthogonal to nA. In the variation, we can replace GCD with �CD as the terms proportional

to nAnCnD will drop out of the di↵erence:

�SEH = � 1

22

Z

@M
ddx

p
�� nA�CD (�GCD;A � �GCA;D) . (81)

But now �CD�GCA;D becomes almost a total tangential derivative which we can integrate by parts.

In more detail, we have the identity

�ED(�C
DnA�GAC);E = �KnAnC�GAC +KAC�GAC + �CDnA�GAC;D , (82)
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where now the quantity on the left really is a total boundary derivative because the covariant

derivative acts on a quantity with projected indices. In this identity we have replaced the covariant

derivative of the unit normal with the extrinsic curvature, nA;C = KAC . This identity combined

with the intermediate result (81) leads to

�SEH = � 1

22

Z

@M
ddx

p
��

�
nA�CD�GCD;A �KnAnC�GAC +KAC�GCA

�
. (83)

Next we consider the variation of the Gibbons-Hawking term:

�SGH =
1

2

Z

@M
ddx

�p
�� �K +K�(

p
��)

�
. (84)

Rewriting �K in terms of the connection leads to

�K = (�rA)n
A +rA�n

A .

The first term in this variation can be simplified straightforwardly:

(�rA)n
A = (�rA)n

A

= (��A
AC)n

C

=
1

2
GAD(�GAD;C + �GCD;A � �GAC;D)nC

=
1

2
GAD�GAD;Cn

C .

The constraint nAnA = 1 implies that the variation of the unit normal must take the form

�nA =

✓
1

2
nAn

BnC + c�B
AnC

◆
�GBC , (85)

where c is an as yet undetermined constant. To fix c = 0, we know that the tangent vectors

@XA/@xµ do not depend on the metric and must be orthogonal to �nA. But to vary K, we need

�nA = �(gABnB) which must then be

�nA = �
✓
1

2
nAnBnC + �ABnC

◆
�GBC . (86)

The variation of the trace of the extrinsic curvature is thus

�K =
1

2
�AD�GAD;Cn

C � K

2
nBnC�GBC �rA(�

ABnC�GBC) . (87)

The variation of the Gibbons-Hawking term then becomes

�SGH =
1

22

Z

@M
ddx

p
��

�
nA�BC�GBC;A �KnAnB�GAB +K�AB�GAB

�
, (88)

where we have discarded a total boundary derivative. As is well known, the normal derivatives in

�SEH and �SGH cancel. As is less well known, the terms proportional to KnAnB�GAB cancel as

well, leaving the boundary stress tensor (75).
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