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The holographic principle states that the physics governing quantum gravity ina d + 1
dimensional volume of spacetime is encoded in a quantum field theory without gravity
defined on the d dimensional boundary. Each degree of freedom of the gravitational
theory can be holographic projected to a degree of freedom on the boundary in such a
way that the two theories are in fact describing the same physics.

The holographic principle is a deep and fundamental property of quantum gravity that
emerged from observations about black holes dating back to the early 70s. In 1972,
Bekenstein introduced the notion of black hole entropy [3] as a measure of inacces-
sibility of information about the interior of a black hole, in analogy to thermodynamic
entropy which is a measure of our ignorance about the microscopic configurations of a
system, when our knowledge is restricted to its macroscopic properties. Since the en-
tropy of any system must be non-decreasing, he asserted that the black hole entropy
is proportional to the area of its event horizon which had already been shown to be
non-decreasing by Christodoulou and Hawking [4, 5, 6].

About twenty years after Bekenstein's area law for black hole entropy, 't Hooft proposed
a radical interpretation for it. Combining black hole thermodynamics with ideas from
quantum mechanics he postulated that at Planckian length scales where quantum grav-
ity takes over, the world is not 3+1 dimensional but instead the observable degrees of
freedom live on a 2 dimensional surface that evolves in time [7]. Said differently, given
a closed surface in spacetime enclosing a quantum gravitational system, all information
contained in the interior of the surface can be holographically projected onto the sur-
face. Moreover, the theory of quantum gravity governing the interior or bulk physics
can be described by a gauge field theory on the boundary surface. This was not the
first time a gauge field theory description was proposed for a theory of quantum gravity
and vice versa. Klebanov and Susskind [8], and Thorn [9] discovered that string theory
can be described by a 2+1 dimensional gauge theory. However, 't Hooft's result is much
stronger as it states that any theory of quantum gravity must be holographic.
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In its strongest form, the AdS/CFT correspondence can be stated

as follows:

The operator content and Hilbert space of an ultraviolet complete theory of quantum gravity
in a (d + 1)-dimensional asymptotically anti-de Sitter spacetime is equivalent to that of a

d-dimensional, unitary and local conformal field theory.
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Scale/Radius Correspondence

The identification of the diffeomorphisms of AdS with the conformal symmetry of the
boundary suggests that the extra dimension of the bulk, namely the holographic or ra-
dial direction, is related to the energy scale of the field theory. In particular, studying
the radial evolution of the bulk field equations tells us something about the renormali-
sation group (RG) flow of the dual operators in the field theory. To illustrate the relation
between the bulk holographic direction and the field theory energy scale we consider
AdSg,1 in Poincaré coordinates in which the metric takes the form
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z is the holographic direction and /¢ is the AdS radius. Constant z hypersurfaces are
parametrised by z#, 1 = 0, ...d, and their topology is R1?~!. According to the AdS/CFT
dictionary, the field theory metric is given by the asymptotic limit of the bulk metric, up
to conformal transformations. Hence, in this case, it can be taken to be the Minkowski
metric parametrised by the same coordinates z*.

The field theory is invariant under rigid scale transformations z* — az* which rescale
the energies of particles according to £ — E/«. In the bulk, this transformation corre-
sponds to the diffeomorphism z# — ax*, = — «az. This leads to the identifications of the
extra bulk dimension with the inverse energy scale of the gauge theory, z ~ 1/E, giving
rise to a scale/radius or UV/IR duality. High energies or equivalently short distances on
the field theory side translate in the bulk to large radii, that is, to moving closer to the
boundary. Another way of understanding this duality is to say that, as we move a bulk
excitation closer to the boundary of AdS, it localises in the field theory, i.e. the wave-
length of the field theory excitation becomes smaller and its energy larger. Conversely,
moving the excitation towards the interior of AdS smears the boundary excitation over
a larger area.
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In the prototypical example of the correspondence the field theory is highly symmetric,
making it unrealistic for real world applications. This, however, is not an issue as the
duality can be extended to less symmetric more realistic setups such as field theories
with some or all supersymmetries and/or the conformal symmetry broken. For exam-
ple, perturbing the field theory Lagrangian by a relevant operator can cause the theory
flow to less symmetric theories. Moreover, the bulk spacetime need not be AdS but
only asymptotically (locally) AdS (AAdS or AIAdS). Such generalisations of AdS/CFT are
referred to as gauge/gravity dualities, although the term AdS/CFT is also used to refer to
them, and they allow for a wide range of applications of the duality.
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and it involves starting from string theory and M-theory and studying
the low energy dynamics of brane configurations, in analogy to what Maldacena did.
This method is quite involved and in principle it provides the dual field theory but there
is no control over what this theory is. In other words, this method will provide the field

theory Lagrangian which is fixed by the string theory configuration one considers.
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alternative, known as the bottom up approach, bypasses the high energy physics and
it involves postulating a gravitational theory on an asymptotically AdS spacetime which
contains supergravity fields dual to a desire set of field theory operators. The choice of
“desired” operators depends on field theory system being modelled which could be for
example a strongly coupled condensed matter system. The field theory is not known
in this case and one only knows of the elements they placed in the theory by hand.
This approach makes use of the AdS/CFT dictionary, the map that relates objects and
features of the bulk theory to objects and features of the boundary field theory. For
example, the bulk theory necessarily contains the gravitational field which, according to
the AdS/CFT dictionary, sources the field theory stress energy tensor. In addition, one
may want to have symmetry currents and operators of various dimensions in the field
theory which requires turning on gauge fields and matter fields in the bulk. Moreover,
one may want to study the field theory at finite temperature. In the bulk this translates
to considering black hole solutions in AdS. Once the building blocks of the field theory
under consideration have been placed in the bulk, one can compute its observables and
study its properties by performing the corresponding bulk computations. In fact, in the
bottom up approach there is no specific Lagrangian for the field theory and the only way
to study it is through the bulk. The work presented in this thesis is an application of the
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We begin by considering the global symmetries of the two theories. According to the
AdS/CFT dictionary, gauge symmetries of the bulk theory are mapped to global sym-
metries of the boundary theory. In particular the isometries of the bulk are mapped
to the global symmetry group of the boundary theory. For example, in the example of
AdSj; x S° the isometry group of AdSs is SO(4,2) and of the S° SO(6). In the N = 4 SYM
we encounter the same symmetry groups. The SO(4,2) is the conformal group in four di-
mensions and the SO(6)~SU(4) is the group associated to the R-symmetry of the theory.

Moreover, the two theories have the same number of supersymmetry generators.

a. Bulk Ficlds <» Boumhrj operasors

In general, for every field ®(z, z) that propagates in the bulk, there is a local, gauge in-
variant operator O(z). The boundary operator couples to the restriction of the bulk field
on the boundary ¢ ) () via a term of the form |, 5, 90O where By is the boundary man-
ifold. Subleading terms in the asymptotic expansion of the bulk field are related to the
expectation value of the field theory operator. Accordingly, the bulk field and opera-

tor must have the same Lorentz structure and quantum numbers.
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3 How AdS/CFT works

The equivalence of N' = 4 SYM and type IIB string theory in AdSs x S® should imply an equality
between their respective path integrals. On the the gauge theory side, we ought to be able to
include gauge invariant sources in the path integral. On the gravity side, AdSs is a space with
boundary (at z = 0 in the parametrization (25)). Thus to be well defined, we need to include
boundary conditions. Consider probing the stack of D3-branes with wave packets sent in from the
asymptotically flat part of the D3-brane geometry. From the near horizon point of view, these
wave packets look alternately like sourcing gauge invariant operators on the D-branes or like setting
boundary conditions for the AdSs space-time. This line of reasoning leads to the central postulate

of the AdS/CFT correspondence, a result [2, 3] whose importance can not be over emphasized:

eWeorrlto] = <exp/d4x ¢0(x)(9(x)> = Zstring [#(%, 2)| 20 = do(x)] (33)

CFT

In this expression ¢(z,z) is a field on the string side of the story. Its boundary value ¢g(x) can
alternately be interpreted as a source for a gauge invariant operator O(z) in the conformal field
theory. The CFT quantity Wepr is then a generating functional for connected correlation functions
of O(z) in the CFT.

While the correspondence (33) is expected to hold true in general, we will be interested in it
primarily in the limit g5 and ¢;/L — 0. In field theory terms, this double limit is ¢g3,,N and
N — oo. Given that we are working in AdS; with a scale set by the radius of curvature L, we can
first replace Zgtring by the corresponding supergravity partition function Zsygra. Then the effective

gravitational coupling constant in the supergravity action (8) we can identify as

(2m)7g2t; _ 8

Because N is large, a saddle point approximation of Zsygra ~ g~ Ses

becomes accurate. (We work
in Euclidean signature here.) In other words, the on-shell gravitational action Ses[¢o] (i.e. the action
evaluated using the equations of motion) is a good approximation to the generating functional,
Werr[do] = —Sos[¢o]. We can therefore use classical gravity to compute connected correlation
functions in the CFT in the limit N — co.

We would like to explore the consequences of the postulate (33) for a free scalar field. Consider

then the action for a real scalar in the Poincaré patch of (Euclidean) AdSg41:
1
5= / a5 [(06)° + w7 . (35)

We focus here just on the AdS;41 geometry and use the line element

(36)

S dztda” + dz?
dSQZLQ{u x :s—i—z}

z

To produce a generating function for the CFT correlation functions, we need to evaluate this action

on-shell with a prescribed boundary condition for ¢ at z = 0. To that end, let us start with the



equation of motion for ¢:
(2710,279%10, + 21" 0,0, — m’L?*) ¢ =0 . (37)

Typically boundary conditions for second order differential equations are either Dirichlet or Neu-
mann. Here, however, z = 0 is a singular point, and the boundary behavior is described instead by

two characteristic exponents which satisfy the following indicial equation:
A(A —d) =m?L* (38)

as can be seen by plugging ¢ ~ z2 into the equation of motion (37) and expanding the result near

z = 0. Generically, one finds the following behavior for ¢ near z = 0:
¢ =az"2 (14 0(2?) + bz2(1 4+ 0(z?)) . (39)

(Interesting issues arise when A is an integer and the series overlap. Extra logarithmic terms appear
which we shall ignore.) If we assume A > d/2, then a describes the leading small z behavior and
we can tentatively identify a = ¢y with the source term in the CFT. The singular behavior at z = 0
means we should really work with a z = € cutoff and modify the basic statement (33) to include an
¢ dependence, ¢|.—. = o2, taking the ¢ — 0 limit only at the end.

Given that the boundary z = 0 is a singular point and we cannot use typical Dirichlet or Neumann
boundary conditions, it is not obvious that the action (35) has a well defined variational principle.
In varying the action, we are left with the following boundary term

58S = - / diz <L>d1(5¢(az,2)az¢(m72) (40)

z

B 1
= L% /m diz ;(&MH +0b22 + .. ) (a(d—A) 272 +bAZA 4+

= —Li! / d’z [(d — A)ada 24728 4L (Adab+ (d— A)dba)

FAbSh AT ]

There are really three potentially overlapping power series in the last line. The boundary variation
(40) includes only the leading term in each power series; the ellipses denote the subleading terms. In
the context of the variational principle, we fix the boundary behavior a = ¢q. Thus, we insist that
da = 0. There remains a term proportional to dba which we need to cancel through the addition of

a boundary term. (The bdb term will vanish given our assumption that 2A > d.) We add

Sbry = %/: ddx\/jfy(éQ(xaz) (41)

where v, is the induced metric on the z = ¢ slice of the geometry, and c is a constant to be
determined. The choice of counter-terms is guided by the requirements that Sy, be local, Lorentz
invariant, and depend only intrinsically on the geometry of the boundary. One could imagine also

terms of the form ¢0¢ and ¢[1?¢ where O = 1#¥§,0, or even, in the case of a curved boundary,

10



R¢? where R is the Ricci scalar curvature of the boundary. By dimensional analysis, these higher
derivative terms must come with additional powers of z and cannot cancel the leading a 6b term.

Given the boundary term (41), the variation is then

6Spry = 2cL7? / diz [ada 24722 L (a b+ bda) + bob 2220 4 . ], (42)
zZ=€

To cancel the a db term in (40), we should set the constant ¢ = (d — A)/2.

Having ensured that the on-shell value of the action is indeed an extremum, and thus that the
saddle-point approximation is sensible, we can ask what the response of the system is to small
changes da in the source term. The calculation is essentially already done. The leading a da term

cancels and one finds
0Stot = 6.5 + 0 Sbry = LFH/ d%z (d —2A)bda . (43)

The expectation value of the operator dual to ¢ then follows from the basic postulate (33):

_ _6Stot _ _6St0t _ rd—-1 _
(0) = 5o = da =LY 2A —d)b . (44)

We have come to a second omission in the discussion. The ellipses in the variations (40) and
(42) contain subleading terms in the a da series which may be dominant compared to the bda term
considered in (43). In general, we require further counter-terms to cancel these subleading a da pieces
and to prevent (O) from being UV divergent. As an example, one may consider the subleading term
in the ada series, proportional to 2%~ 24+2§aa. Assuming 2A > d + 2, this term is dominant
compared to bda, but it can be canceled by adding a ¢[J¢ boundary term to the action. That these
counterterms can be identified in general and that (O) can be renormalized is discussed in more
detail in for example ref. [8]. The procedures described above for scalar fields can be generalized for
higher spin fields. These techniques usually go by the name of “holographic renormalization”.

Note that the characteristic exponent A is also the scaling dimension of the operator O. The
transformation rule x — Az and z — Az is a symmetry of the line element (36) and of the geometry
of AdS441. The restriction of the scaling symmetry to the boundary z = 0 corresponds to scale
transformations of the CFT. Under this scale transformation, the field ¢ transforms as ¢'(z,z) =

#(Az, Az). Thus we find that
(0 = AR(0) . (45)

Primary scalar operators in CFT satisfy a unitarity bound [9], A > (d — 2)/2, saturated by the
free field case. The assumption A > d/2 thus leaves out a set of operators with scaling dimension
in the range (d —2)/2 < A < d/2. To close this gap, let us now assume that A < d/2 and repeat
the exercise we went through above. We still freeze the value of a and thus set da = 0. Now, in
addition to canceling the a db term in the variation (40), we also need to cancel the bdb term, which
no longer vanishes in the limit z — 0. Breaking from our rule that counterterms should depend only

on the intrinsic geometry of the boundary, we add a Gibbons-Hawking like term that depends on a

11
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Figure 1: A plot of the scaling dimension A of O versus the mass m of the AdS;4; scalar ¢.

normal derivative
C
Siry = / A= (E 0+ c’n”¢8u¢) . (46)

where ¢ and ¢’ are constants and n* = (0, z/L) is a unit normal to the boundary. We leave it as an
exercise to show that ¢ =1 and ¢ = —A/2 for a good variational principle. Just as we did earlier,
we can then consider the response of the system to a small da. We find that (O) = LY~1(2A — d) b,
just as before. In the window (d —2)/2 < A < d/2, there are no subleading divergences in the bdb
series, and no further counter-terms are needed.

The set of scalar fields considered in this lecture is summarized pictorially in figure 1. The point
A = d/2 where the curve turns around is known as the Breitenlohner-Freedman (BF) bound. It is
the smallest mass-squared for a scalar field in AdS4,; that allows for a sensible stress-energy tensor
[10, 11].

While for simplicity, we have focused on the simplest case of the Poincaré patch, the techniques
here generalize to situations where the space is only asymptotically, in the limit z — 0, of AdS type.
From a CFT point of view, this restriction on the asymptotics means keeping the UV behavior of
the field theory the same. One could imagine, for example, providing a nonzero source ¢g # 0 for
a relevant operator A < d, in which case the large z (i.e. low energy) geometry will generally be
modified. The small z asymptotics remain the same, and now we may calculate correlation functions
in the presence of the source. On the other hand, if we add a source for an irrelevant operator A > d,
the small z (i.e. high energy) geometry will be modified and the preceding results can no longer be

applied.
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3.1 Scalar Two-Point Functions in Pure AdS,,

Above, in expanding the field ¢(z, z) near the boundary
Hz,z) =27 2a(l+...) +22b(1 +..)

and positing a = ¢g, we found that the one-point function (O) ~ b was determined by the coefficient
of the second series. Here, we will use a second boundary condition to find a relation between b and
the source a. Given that relation, we can then compute a two-point correlation function (OO) by
varying (O) with respect to a = ¢yg.

In pure AdS441, we can find an explicit solution of the equations of motion (37) for the scalar
field. We first make a plane wave ansatz, ¢ ~ e*?¢(z). The equation of motion simplifies to an

ordinary differential equation
2T = (PR +mP L) =0, (47)
where ’ denotes 0,. Next, we make the substitution ¢(z) = 24/2H(z),
d2
22H" + zH' — <k222 +m?L? + 4> H=0, (48)

and recognize a second order differential equation of Bessel type. In the Euclidean or space-like case

where k2 > 0, we find a solution in terms of Hankel functions:
H = e; HWV (ikz) + o HP (ikz) (49)

where we have defined v = \/m To fix the second boundary condition, consider the large
z behavior where H,(,l)(ikz) ~ e % and H,S2)(z'kz) ~ eF* allowing us to set ¢z = 0 and throw out
the second, exponentially growing solution.

To extract the two-point function, consider the small z expansion of the solution, assuming

A > d/2 and that v is not an integer,

e (@ ) e () )]

From the leading and subleading coefficients of the series expansion, we can read off the values of

6o and (O):
w = a(-1)(3) 10, (51)

0) zk) 1+ icot(mv) (52)

(28 —d)L* e, (2 T(1+v)

The (Fourier transform of the) two-point function can then be extracted by varying the one-point

function:

00y = HOV _{O) Ly, (BT Lt icot(my) oy
620 =5t = Gl =2 (3) et 9)
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We need now to Fourier transform back to position space. Focusing on the k% = k*2~? behavior,

note that by translational symmetry and dimensional analysis, the only possible result is that

dk

<O(x2)0(“)>:/ a0 Rt e o 1

|zg — x1\2A :

(54)

Two-point functions in CFT are indeed constrained to have precisely this form.

3.2 Gauge fields in the bulk, global symmetries in the boundary

Having gained some experience with scalar fields, we move on to gauge fields in AdS441, which
in the context of the holographic renormalization are actually somewhat simpler, requiring fewer
counter-terms. Consider the following abelian gauge field in the bulk:
1
S = ~ iz / d™ e/ —gF g FAB . (55)
The equations of motion are simply d41/—¢gF48 = 0. To keep the discussion simple, we pick a
radial gauge A, = 0. The equations of motion d4/—gF*" expand, using the line element (36), to

give
0,257, A, + 2o\ F,, =0 . (56)

In analogy to the scalar discussion, we consider a small z expansion of the gauge field, A, ~ 22,

The corresponding indicial equation
AA+2-d)=0, (57)
has the two roots A =0 and A = d — 2, leading to the following small z series solution
Ay =a,(1+..)+b,27 21 +...) . (58)
We should also consider the remaining equation of motion d41/—gF#* = 0 which expands to give
0,270, " A, =0 . (59)

Inserting the small z series solution into this equation of motion produces the constraint 9,,n"*"b, = 0.
In other words, n*b, satisfies a current conservation condition.
In determining the equations of motion, we produced a boundary term which we now consider

more carefully:

L3 .
08 = = / ) dda 2375 A,0.A, (60)
Ld—3
= = /_ dda 237 (8ay, + 8b, 2472)((d — 2)b, 2973 +..) (61)
4-3
= / d‘z (d — 2)n""Sa,, b, . (62)

To get a good variational principle, where we set da,, = 0, we need no further counter-terms. To

extract the one-point function however, we may find that even though the leading a da term cancels
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because of the 0, derivative, there could be subleading divergences that are nonetheless dominant
compared to the dab term. In fact the situation here is further complicated by the fact that d — 2
is integer and the two series may overlap, generating logarithms. There is a z — —z symmetry of
the equations of motion which implies that the series expansion is in even powers of z. Thus, the
series only overlap when d is an even integer. While in d = 3, we may take the variation (62) at face
value, in d = 4 a logarithmic singularity appears which requires more careful treatment. In d > 4,
there can be further complications. Ignoring these gritty details, we take the variation (62) at face
value and compute the one-point function:

. d—3
58  (d—2)L i

(") = ) » (63)

(5aM e

We are now in a position to identify the operator J*. From the point of view of the CFT, it is
sourced by an external gauge field a, and satisfies a current conservation condition 9,,J* = 0. Thus
it must be a conserved current. Note that a, is not dynamical both from the gravity and CFT point

of view.

3.3 The stress tensor

The stress-tensor operator in the CFT is one of the more difficult fields to study through AdS/CFT
but also one of the most useful and interesting. It naturally couples to the boundary value of the
metric. To analyze this case, let us first set some notation. The bulk metric shall be Ga4p. We will

pick a gauge where the line-element is
o L*
ds® = ?dz + Yudatda” (64)

where 7, is the boundary metric. We further define

22

g/ﬂ/ = ﬁry;,w . (65)

In general, g, will have a nontrivial z dependence which we can write for small z as

((JV)+22 (21,)+...+zd (U,l,)+zd+2gﬁ,+2)+..., odd d
= O 4 2, (@) (@) (66)
+ 2295 + ...+ 2% + z%ogz hyy + ..., evend

Note that the CFT metric is not g,, but the boundary value g( )

The full tensor structure g,
contains more information, as we will see.

Given the earlier discussion of scalars and gauge fields, we can anticipate that the action will
contain a bulk contribution, a boundary contribution to have a good variational principle, and

further counter-terms to render the correlation functions finite:
S = Sgu + Sau + Scir - (67)

The bulk term is Einstein-Hilbert plus a negative cosmological constant, required so that AdSg41 is

a solution of the equations of motion:

SEH =

22 dd+1xF<R+( D). (68)
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However, anti-de Sitter space has a boundary and second derivatives R ~ 02G 4p in the action will
generate boundary terms of the form 04(dgpc) which need to be canceled. The standard procedure

is to add a Gibbons-Hawking term
1
Sen = — / dlzy/ =K | (69)
K= Jom

where K = GABV 4np is the trace of the extrinsic curvature and ng is an outward pointing unit nor-
mal vector. Such a boundary term will cancel normal derivatives of the metric variation n94(5gpc).

The variation of the Einstein-Hilbert term gives

CM;”) 5(@)] . (70)

1
6Spn = = [ d% 'z {m(éRAB)GAB + V=GRApsGAE + (R+ -

2/{2 M
The variation of the second two terms produces Einstein’s equation, which vanish on-shell. The

variation of the Ricci tensor is a covariant derivative
§Rap = —(6T%0):8 + (0T'%R)c , (71)

a result sometimes known as the Palatini identity. Inside the action, this variation becomes a total

derivative
V=GG*B§Rap = —(V-GGABTS ) 5 + (V-GGAP5T9E) o (72)

Skipping some steps which we will flesh out in the next section, this total derivative reduces to the

boundary term

1
§SEg = ~5.3 dlzy/—~ (nA’yCDdGCD;A — Kn*nP6Gap + KABéGAB) . (73)
oM
Meanwhile, varying the Gibbons-Hawking term leads to

S = — [ ata [y=oK - K8/ (74)

K2

Again skipping some steps, the variation of the extrinsic trace produces
1 K
0K = §VCD5GCD;ATLA - ?nAnBéGAB )

Assembling the pieces, the boundary variation is then

1
0SEH + 0SgH = “2:2 J, A%z =y (K" — KA )6y (75)
M

where Kap = V(4npy. Thus the “bare” stress tensor will be®

V-9 48 Li+2 1
pnv g _ _ [ 172 pv

(Tbare

This stress tensor appears in the early AdS/CFT paper [12]. The factor of z=9=2 in this expression

suggests that the bare stress tensor may be divergent. Indeed, combined with an inverse metric

5In Lorentzian signature, conventionally the variation of the action is proportional to the stress tensor. In Euclidean,

there should be a relative minus sign. We are implicitly working in Lorentzian signature here.
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factor vV, there will in general be divergent terms starting at order z~—¢. These terms need to be
regulated. The form of the counter terms in d < 6 is

S = % /BM d'e/= [dz "+ 2(dL— DT 4)L(Z —2)? (RWR’” - 4(dd—1)R2> I } 70

The Ricci tensor R, is computed with the boundary metric v,,. We include as many of these

counter-terms as are necessary to cancel the divergences. A term of the form \/—7R"™ can cancel a

d+2n - Ag a result, we need to include counter terms up to but not including

divergence of order z~
O(R%?) to cancel potential divergences. (In even d, there is an ambiguity in the definition of
the stress tensor that comes from including terms of precisely O(R%/?). This ambiguity parallels a
similar ambiguity on the the field theory side. In d = 4, for example, there is an analogous ambiguity
in the coefficient of the OJR term in the trace anomaly.) In AdSs, only the first term is needed. For
AdS, and AdSs, the first and second are needed. The second term proportional to R can be thought
of as an analog of the ¢[J¢ counter term we needed for the scalar field. For AdSg and AdS;, all

three are needed, and higher order terms we have not written down would need to be constructed

to regulate the divergences in d > 6.

Deriving the Boundary Stress Tensor

Similar discussions to the following can be found in textbooks on general relativity, for example
appendix E.1 of Wald’s book. However, in most of the general relativity literature, the variation
of the metric on the boundary is set to zero, §Gap|.—0 = 0. Like in the the case of the scalar
we studied before, we would like to discover the response of the system to small variations in the
boundary value of §G4p5. Thus we need to redo the classic textbook calculations, keeping a nonzero
value for the metric fluctuations on the boundary.

We begin by studying the term proportional to dR4p in the variation of the Einstein-Hilbert
action (70). Using that 6 R4p becomes a total derivative (72) inside the integral, the variation (70)

becomes
1
0Sgn = 32 dlzy/— [GAB(SI‘gCnB - GABM‘ZBnc} (78)
oM
1
= —53 d?x/—y GABGCP (0Gepsanp — G ap;Bnc) (79)
K= Jom
1
= 33 dz/=yn*GYP (Gep.a — 6Geap) - (80)
K= Jom

We can write the boundary metric as an operator v4% = GAB — n4n® that projects onto the

subspace orthogonal to n. In the variation, we can replace G¢P with v¢P as the terms proportional

to nAnEnP will drop out of the difference:
1
0Sen = -5 / A=y nyP (Gop.a — 0Geap) - (81)
oM

But now 7“P§G¢ A;p becomes almost a total tangential derivative which we can integrate by parts.

In more detail, we have the identity

VEP (v4nA6G ac).r = —Knn®5Gac + KA95G ac +7v“Pn?6Gac.p , (82)
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where now the quantity on the left really is a total boundary derivative because the covariant
derivative acts on a quantity with projected indices. In this identity we have replaced the covariant
derivative of the unit normal with the extrinsic curvature, n¢ = K4¢. This identity combined

with the intermediate result (81) leads to

1
8Sen = —55 | d%av=y (n"yPoGepa — Kn*nCsGac + K*78Gea) - (83)
oM

Next we consider the variation of the Gibbons-Hawking term:
§Scu = % /6 . Az (V=7 6K + K5(v=7)) . (84)
Rewriting § K in terms of the connection leads to
K = (0Va)n™ + Vaon? .
The first term in this variation can be simplified straightforwardly:

(5VA)TLA = (5VA)77,A
= (5Fﬁc)nc

= JGMP(Ganc + 0Gepia — G acip)n
= %GADéGAD;CnC
The constraint nn4 = 1 implies that the variation of the unit normal must take the form
ong = (;nAanC + cvfnc) 0Gpc , (85)

where ¢ is an as yet undetermined constant. To fix ¢ = 0, we know that the tangent vectors
0X4/0z" do not depend on the metric and must be orthogonal to én4. But to vary K, we need

on? = 6(¢*Bnp) which must then be
1
ont = — <2nAanC + 'yABnC) 0Gpc - (86)

The variation of the trace of the extrinsic curvature is thus

1

K
0K = 2VAD5GAD;CTLC — E’FLBTLC(SGBC — VA(’YABTLC(SGBc) . (87)

The variation of the Gibbons-Hawking term then becomes

1
0Sgu = 32 d?ax/ =~ (nA'yBC(SGBC;A — Kn*nBsGap + KA/ABcSGAB) , (88)
oM

where we have discarded a total boundary derivative. As is well known, the normal derivatives in
0Sgn and §Squ cancel. As is less well known, the terms proportional to Kn4nP5Gap cancel as

well, leaving the boundary stress tensor (75).
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