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1 Thermal AdS/CFT

1.1 Introductory Words

In this lecture we will go beyond the conformal and maximally supersymmetric version of the AdS/CFT

correspondence. We will introduce an energy scale to the CFT and a black hole to the bulk and observe

the consequences.

Lets start with remembering the initial statement of the correspondence.

Holographic Principle: In the context of semi-classical quantum gravity, the information restored

in a volume Vd+1 is encoded in the boundary area Ad. This is motivated by the Bekenstein bound.

Bekenstein bound states that the maximum entropy of the entropy stored in a volume Vd+1 is given as

S = Ad/(4GN ) which is measured with respect to planck scale and the Newton constant.

Then we can understand the AdS/CFT correspondence as a realisation of the holographic principle

such that the TypeIIB string theory which is reduced to a five dimensional quantum gravity theory by

Kaluza-Klein reduction on a five-sphere is related to the four-dimensional conformal field theory which

lives on the boundary of the five-dimensional space. The fundamental parameters of the string theory

and the field theory is related as

g2YM = 2πgs ,
1

2g2YMN
=

α′2

L4
(1)
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There is a way to see this correspondence as a strong/weak coupling duality which will interest us more

in this lecture. In the strongly coupled large N limit of the gauge theory, string length should be very

small compared to the radius of curvature (close string perspective).

To go beyond the conformal realm, first I will explain what I mean by thermal CFTs. Then we will look

at the black hole thermodynamics in the AdS which admits the thermal CFT as its boundary. Finally

we will bring these two parts together in the ten-dimensional context by using black branes.

In this lectures my main sources are

• Alberto Zaffaroni’s lecture notes, Introduction to the AdS/CFT correspondence

• Christopher P. Herzog’s lecture notes, AdS/CFT

• Gauge/Gravity Duality book by Johanna Erdmenger and Martin Ammon

• Pioneering papers by Juan Maldecena and Edward Witten.

– J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,”

Int.J.Theor.Phys. 38 (1999) 1113–1133, arXiv:hep-th/9711200 [hep-th]

– E. Witten, “Anti-de Sitter space and holography,” Adv.Theor.Math.Phys. 2 (1998) 253–291,

arXiv:hep-th/9802150 [hep-th]

– E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theo-

ries,” Adv.Theor.Math.Phys. 2 (1998) 505–532, arXiv:hep-th/9803131 [hep-th]

1.2 Thermal CFT

To break the conformal invariance we introduce a temperature and thermalize the states. This introduces

a scale for the energy and breaks the conformal invariance. Practically, we can achieve this by performing

Wick rotation and then compactifying the Euclidean time direction on a circle, S1. The claim is the

partition function of the CFT on the manifold M×S1 will be equivalent to a thermal partition function.

TrH(e−βH) =

∫
M×S1

d[Φ]e−SE(Φ) . (2)

Here, the relation between the inverse temperature and the radius is given as 2πRS1 = β = 1
T . By

looking at the quantum mechanical example we can demonstrate how the radius of the circle is related

to the inverse temperature. Recall that the thermal partition function is given as

Z = Tr(e−H/T ) =
∑
n

eiEn/T (3)

is the sum over all eigenstates |n⟩ with the energies En. On the other hand, we start with the standard

path integral formula with Lorentzian signature, the time evolution expressing the propagator as a sum

over paths connecting two points,

⟨x|e−iHt|x′⟩ =
∫ x(t)=x′

x(0)=x

[dx(t)]eiS[x(t)] . (4)
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If we wick rotate to Euclidean signature and take the trace we can identify these two expressions.

Tr(e−βH) =

∫
dx ⟨x|e−βH |x⟩

=

∫
dx

∫ x(−iβ)=x

x(0)=x

[dx(t)]eiS[x(t)]

=

∫
dx

∫ x(β)=x

x(0)=x

[dx(tE)]e
−SE [x(tE)]

=

∫
x(tE)=x(tE+β)

[dx(tE)]e
−SE [x(tE)] (5)

where t = −itE and the final path integral in taken over all paths that are periodic in time. This formula

is easily generalized to a quantum field theory, expressing the thermal partition function as a Euclidean

path integral with fields that are periodic of period β = 1
T in the Euclidean time. If we would be more

careful, a more complete comparison reveals that we need to compactify the Euclidean time and take

periodic boundary conditions for bosons and antiperiodic boundary conditions for fermions. This also

indicates that the supersymmetry is broken.

Thermal correlation functions of the thermal CFTs is defined as

⟨O⟩β = Tr

(
exp(−βH)

Tr exp(−βH)
O
)

. (6)

Furthermore, the thermal Greens function is defined by

GC(x1, · · · , xn) = ⟨TCϕ(x1) · · ·ϕ(xn)⟩β , (7)

here, the green’s function is defiend for the complex time, ti. Therefore, how to defien the time ordering

is tricky. We are required to choose a curve on the complex plane which is parametrized by the real

number and TC is there to indicate this important detail.

Not much is known about the thermal CFTs yet!

1.3 Thermal AdS

We want to understand the thermal CFTs from the bulk perspective. To have a holographic description

of the thermal CFT we consider a black-hole in the AdS5 because it has the S3 × S1 space-time as its

boundary.

We start with the following form of the bulk metric.

ds2

L2
=

1

z2

(
−f(z)dt2 +

dz2

f(z)
+ b2dΩ2

3

)
(8)

such that

dΩ2
3 = dθ21 + sin2 θ1dθ

2
2 + sin2 θ1 sin

2 θ2dϕ
2 (9)

Here, we use the form of the metric which as the inverse of the radius compared to the Poincare patch

of the metric, z = L2/r. Therefore, the conformal boundary is at z = 0 and the Poincare horizon is at
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z → ∞. And L is still the same radius of the curvature. The Einstein equations are

RAB = − 4

L2
GAB (10)

and the θ1θ1 component of this equation gives a first order differential equation for f(z)

f ′ − 4

z
f +

2z

b2
+

4

z
= 0 (11)

and the most general solution for f(z) is given as

f(z) = 1 +
z2

b2
+ cz4 (12)

Note that b is the radius of S3 and β is proportional to the radius of S1 as explained in the previous

section. Furthermore, we can recover the Poincare patch by taking b → ∞ and we would zoom in to a

small region on the S3. And finally we may introduce a black hole by choosing c. If we choose,

c = −1 + z2h/b
2

z4h
(13)

then we introduce a black hole into bulk space time such that its horizon is located at

gtt(z = zh) = 0 (14)

To obtain the Hawking temperature we demand the Euclidean metric to be regular at z = zh. We also

performed Wick rotation.

ds2E
L2

=
1

z2h

(
f ′(zh)(z − zh)dτ

2 +
dz2

f ′(zh)(z − zh)
+ · · ·

)
(15)

We introduce a new radial parameter,

r =
2L

zh
√
|f ′(zh)|

√
zh − z (16)

such that the metric takes the following form

ds2E =
f ′(zh)

2

4
r2dτ2 + dr2 + · · · (17)

At this point we can actually see how the period of the radial coordinate enters to the the Euclidean

path integral as an overall factor and replaces the inverse temperature in the thermal partition function

definition. When we introduce an angular variable with period 2π,

dθ =
|f ′(zh)|

2
dτ (18)

we can read the Hawking temperature as the inverse of the period of τ variable,

TH =
|f ′(zh)|

4π
(19)

=
1

πzh
+

zh
2πb2

(20)
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Observe that every-value of TH there are two zh values. The relatively larger value of zh corresponds to

relatively small black hole because the horizon is further from the boundary an has a smaller area.The

smaller black holes are similar to the black holes in flat space-time but in this context the larger ones

have positive specific heat (and this means they are stable).

We can deepen our understanding by also computing the free-energy from the Euclidean action. In a

gravitational theory we have the following description of the partition function.

Zgrav = e−S (21)

We wnat to interpret it as a thermal partition function therefore, we identify

S(Euclidean) =
F

T
(22)

We start with the 5d Euclidean gravity action which is given in terms of three-pieces.

Sgrav = SEH + SGH + Sctr (23)

We compute each of these contributions one-by-one.

SEH = − 1

2κ2

∫
d5x

√
−G

(
R+

12

L2

)
(24)

= − L3

2κ2
Vol

(
S3

) 1

T

∫ zh

ϵ

dz

(
− 8

z5

)
b3 (25)

= −L3

κ2
Vol

(
S3

) 1

T

(
1

z4h
− 1

ϵ4

)
b3 (26)

Here, we took R = −20/L2. Then we move on to Gibbons-Hawking term:

SGH = − 1

κ2

∫
d4x

√
−γK (27)

such that

K =
1√
−G

∂z
√
−G

(
− z

L

√
f
)

(28)

= −z5∂z

(√
f

z4
1

L

)
(29)

Therefore, the Gibbons-Hawking term of the action is given as

SGH =
L3

κ2
b3Vol

(
S3

) 1

T

(
z
√
f∂z

(√
f

z4

))
z=ϵ

(30)

= −L3

κ2
b3Vol

(
S3

) 1

T

(
4

ϵ4
+

3

b2ϵ2
− 2(1 + z2h/b

2)

z4h
+ · · ·

)
(31)

Finally the action of the counter-term brings the following expression to the sum.

Sctr =
1

κ2

∫
d4x

√
−γ

(
3

L
+

L

4
R

)
(32)

=
L3

κ2
b3Vol

(
S3

) 1

T

1

z4

√
f

(
3 +

3

2

z2

b2

)
z=ϵ

(33)

=
L3

κ2
b3Vol

(
S3

) 1

T

(
3

ϵ4
+

3

b2ϵ2
+

3

8

(
1

b4
− 4

z4h
− 4

b2zh

))
(34)
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We observe that the powers 1
ϵ is divergent but they cancel. Therefore we are left with the total expression,

Sgrav =
L3

κ2
Vol

(
S3

) 1

T
b3

(
3

8b4
− 1

2z4h
+

1

2b2z2h

)
(35)

From the on-shell action we deduce the free-energy for the black hole and the AdS space.

Fbh =
L3

κ2
Vol

(
S3

)
b3

(
3

8b4
− 1

2z4h
+

1

2b2z2h

)
(36)

FAds =
L3

κ2
Vol

(
S3

)
b3

(
3

8b4

)
(37)

If we consider the difference of these free-energies we obserev the following.

∆F =
L3

κ2
Vol

(
S3

) b3

z4h

(
z2h
b2

− 1

)
(38)

Then we define the entropy as

S =
dF

dT
=

dF

dzh

(
dT

dzh

)−1

(39)

=
L3

κ2
Vol(S3)b3

4π

z3h
(40)

Then heat capacity

C = T
dS

dT
= T

dS

dzh

(
dT

dzh

)−1

(41)

=

(
1

πzh
+

zh
2πb2

)
L3

κ2
Vol(S3)b3

(
−12π

z4h

)(
− 1

πz2h
+

1

2πb2

)−1

(42)

We realize that when zh < b blackhole state is favored and when b < zh thermal AdS is favored.

Mention the b → ∞ limit to connect to the last part.

1.4 Concluding remarks - The black three-brane and the thermal SYM

Now we take a brief look at the AdS/CFT correspondence which is describing the N = 4 SYM with the

gauge group SU(N) on R3 × S1. Therefore, we start with TypeII-B string theory on AdS5 × S5 with N

D3-branes.

ds2 =
R2

z2

 3∑
i=1

dx2
i +

(
1− z4

z4h

)
dτ2 +

1(
1− z4

z4
h

)dz2
+R2dΩ5 (43)

R =
√
4πgsNα′, The metric is a product of the metric we discussed in the previous section under the

limit b → ∞ and the metric of 5-sphere. The geometry has a horizon at z = zh and the radius is R0 = zh
2 .

We already study the thermodynamics of such a system. Here we can combine that analysis with the

relations between the gauge theory and quantum gravity parameters. The connection between Einstein

terms is given as the following.

1

(2π)7(α′)4g2s

∫
d10x

√
gR −→ R3Vol(S5)

(2π)7(α′)4g2s

∫
d5x

√
GR (44)
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such that

1

16πGN
=

1

(2π)7(α′)4g2s
R5π3 (45)

Then we can use the holographic dictionary to obtain the following relations.

√
x =

L2

α′ ,
x

N
= 4πgs −→ g2s =

R8

16π2N2(α′)4
(46)

therefore,

R3

4GN
=

N2

2π
(47)

Then we conclude that the free-energy of N = 4 SYM in large N should be

F = −π2

8
N2T 4V (48)

which correctly scales like N2, which is proportional to the number of degrees of freedom. In a free theory,

we could compute the free energy of a gas of free gluons, fermions and scalars in thermal equilibrium at

temperature T .

Finally recall that we also can consider the N = 4 SYM on S3×S1. In this case we have two possible bulk

geometries as we discussed before. One is the Schwarzschild black hole in AdS with the evert horizon

located at zh. And the other is the thermal AdS for zh = 0. Since both of these solutions also require

the same spin structure we conclude that there are two saddle point contributions to the gravitational
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part integral and we need to figure out which one dominates. Hawking and Page discovered that there

is a phase transition with the critical temperature

Tc =
3

2πR
(49)

such that for T > Tc the black hole solution dominates and the free energy scales as N2. When

Tc > T the thermal AdS solution dominates and free-energy is scaled as O(1). This is interpreted as a

confinement/deconfinement phase transition in the gauge theory side.
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