
1 Introduction

In this review we discuss some recent progress on aspects of the black hole information

paradox.

Before delving into it let us discuss a big picture motivation. One of the main motivations

to study quantum gravity is to understand the earliest moments of the universe, where we

expect that quantum effects are dominant. In the search for this theory, it is better to consider

simpler problems. A simpler problem involves black holes. They also contain a singularity

in their interior. It is an anisotropic big crunch singularity, but it is also a situation where

quantum gravity is necessary, making it difficult to analyze. Black holes, however, afford us

the opportunity to study them as seen from the outside. This is simpler because far from the

black hole we can neglect the effects of gravity and we can imagine asking sharp questions

probing the black hole from far away. One of these questions will be the subject of this

review. We hope that, by studying these questions, we will eventually understand the black

hole singularity and learn some lessons for the big bang, but we will not do that here.

Studies of black holes in the ’70s showed that black holes behave as thermal objects. They

have a temperature that leads to Hawking radiation. They also have an entropy given by the

area of the horizon. This suggested that, from the point of view of the outside, they could be

viewed as an ordinary quantum system. Hawking objected to this idea through what we now

know as the “Hawking information paradox.” He argued that a black hole would destroy

quantum information, and that the von Neumann entropy of the universe would increase

by the process of black hole formation and evaporation. Results from the ’90s using string

theory, a theory of quantum gravity, provided some precise ways to study this problem for

very specific gravity theories. These results strongly suggest that information does indeed

come out. However, the current understanding requires certain dualities to quantum systems

where the geometry of spacetime is not manifest.

During the past 15 years, a better understanding of the von Neumann entropy for grav-

itational systems was developed. The computation of the entropy involves also an area of

a surface, but the surface is not the horizon. It is a surface that minimizes the general-

ized entropy. This formula is almost as simple as the Bekenstein formula for black hole

entropy [1,2]. More recently, this formula was applied to the black hole information problem,

giving a new way to compute the entropy of Hawking radiation [3,4]. The final result differs

from Hawking’s result and is consistent with unitary evolution.

The first version of the fine-grained entropy formula was discovered by Ryu and Takayanagi

[5]. It was subsequently refined and generalized by a number of authors [3,4,6–11]. Originally,

the Ryu-Takayanagi formula was proposed to calculate holographic entanglement entropy in

anti-de Sitter spacetime, but the present understanding of the formula is much more general.

It requires neither holography, nor entanglement, nor anti-de Sitter spacetime. Rather it is

a general formula for the fine-grained entropy of quantum systems coupled to gravity.
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Our objective is to review these results for people with minimal background in this

problem. We will not follow a historical route but rather try to go directly to the final

formulas and explain how to use them. For that reason, we will not discuss many related

ideas that served as motivation, or that are also very useful for the general study of quantum

aspects of black holes. A sampling of related work includes [12–35].

Many details and caveats will necessarily be swept under the rug, although we will discuss

some potential technical issues in the discussion section. We believe the caveats are only

technical and unlikely to change the basic picture.

2 Preliminaries

2.1 Black hole thermodynamics

When an object is dropped into a black hole, the black hole responds dynamically. The event

horizon ripples briefly, and then quickly settles down to a new equilibrium at a larger radius.

It was noticed in the 1970s that the resulting small changes in the black hole geometry are

constrained by equations closely parallel to the laws of thermodynamics [1, 2, 36–42]. The

equation governing the response of a rotating black hole is [40]

κ

8πGN
d (Area) = dM − ΩdJ , (2.1)

where κ is its surface gravity1, M is its mass, J is its angular momentum, and Ω is the

rotational velocity of the horizon. The area refers to the area of the event horizon, and GN is

Newton’s constant. If we postulate that the black hole has temperature T ∝ κ, and entropy

SBH ∝ Area, then this looks identical to the first law of thermodynamics in the form

TdSBH = dM − ΩdJ . (2.2)

In addition, the area of the horizon always increases in the classical theory [38], suggesting

a connection to the second law of thermodynamics. This is just a rewriting of the Einstein

equations in suggestive notation, and initially, there was little reason to believe that it had

anything to do with ‘real’ thermodynamics. In classical general relativity, black holes have

neither a temperature nor any significant entropy. This changed with Hawking’s discovery

that, when general relativity is coupled to quantum field theory, black holes have a temper-

ature [42]

T =
~κ
2π

. (2.3)

1Unfortunately, the name “surface gravity” is a bit misleading since the proper acceleration of an observer
hovering at the horizon is infinite. κ is related to the force on a massless (unphysical) string at infinity, see
e.g. [43].
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(We set c = kB = 1.) This formula for the temperature fixes the proportionality constant in

SBH ∝ Area. The total entropy of a black hole and its environment also has a contribution

from the quantum fields outside the horizon. This suggests that the total or ‘generalized’

entropy of a black hole is [2]

Sgen =
Area of horizon

4~GN
+ Soutside , (2.4)

where Soutside denotes the entropy of matter as well as gravitons outside the black hole, as

it appears in the semiclassical description. It also includes a vacuum contribution from the

quantum fields [44].2 The generalized entropy, including this quantum term, is also found to

obey the second law of thermodynamics [45],

∆Sgen ≥ 0 , (2.5)

giving further evidence that it is really an entropy. This result is stronger than the classi-

cal area theorem because it also covers phenomena like Hawking radiation, when the area

decreases but the generalized entropy increases due to the entropy of Hawking radiation.

The area is measured in Planck units, l2p = ~GN , so if this entropy has an origin in

statistical mechanics then a black hole must have an enormous number of degrees of freedom.

For example, the black hole at the center of the Milky Way, Sagittarius A*, has

S ≈ 1085 . (2.6)

Even for a black hole the size of a proton, S ≈ 1040. In classical general relativity, according

to the no-hair theorem, there is just one black hole with mass M and angular momentum J ,

so the statistical entropy of a black hole is naively zero. Including quantum fields helps, but

has not led to a successful accounting of the entropy. Finding explicitly the states giving rise

to the entropy is an interesting problem, which we will not discuss in this review.

2.2 Hawking radiation

The metric of a Schwarzschild black hole is

ds2 = −
(

1− rs
r

)
dt2 +

dr2

1− rs
r

+ r2dΩ2
2 . (2.7)

2 The quantum contribution by itself has an ultraviolet divergence from the short distance entanglement
of quantum fields across the horizon. This piece is proportional to the area, A/ε2uv. However, matter loops
also lead to an infinite renormalization of Newton’s constant, 1/(4GN )→ 1

4GN
− 1

ε2uv
. Then these two effects

cancel each other so that Sgen is finite. As usual in effective theories, these formally “infinite” quantities are
actually subleading when we remember that we should take a small cutoff but not too small, lp � εuv � rs.
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The Schwarzschild radius rs = 2GNM sets the size of the black hole. We will ignore the

angular directions dΩ2
2 which do not play much of a role. To zoom in on the event horizon,

we change coordinates, r → rs(1 + ρ2

4r2s
), t → 2rsτ , and expand for ρ � rs. This gives the

near-horizon metric

ds2 ≈ −ρ2dτ2 + dρ2 . (2.8)

To this approximation, this is just flat Minkowski spacetime. To see this, define the new

coordinates

x0 = ρ sinh τ, x1 = ρ cosh τ (2.9)

in which

ds2 ≈ −ρ2dτ2 + dρ2 = −(dx0)2 + (dx1)2 . (2.10)

Therefore according to a free-falling observer, the event horizon r = rs is not special. It

is just like any other point in a smooth spacetime, and in particular, the geometry extends

smoothly past the horizon into the black hole. This is a manifestation of the equivalence

principle: free-falling observers do not feel the effect of gravity. Of course, an observer that

crosses the horizon will not be able to send signals to the outside3.

The spacetime geometry of a Schwarzschild black hole that forms by gravitational collapse

is illustrated in fig. 1. An observer hovering near the event horizon at fixed r is accelerating —

a rocket is required to avoid falling in. In the near-horizon coordinates (2.10), an observer at

fixed ρ is following the trajectory of a uniformly accelerated observer in Minkowski spacetime.

A surprising fact is that a uniformly accelerating observer in flat space detects thermal

radiation. This is known as the Unruh effect [46]. There is a simple trick to obtain the

temperature [47]. The coordinate change (2.9) is very similar to the usual coordinate change

from Cartesian coordinates to polar coordinates. It becomes identical if we perform the Wick

rotation τ = iθ, x0 = ix0
E ; then

x0
E = ρ sin θ, x1 = ρ cos θ . (2.11)

The new coordinates (x0
E , x

1) or (ρ, θ) are simply Cartesian or polar coordinates on the

Euclidean plane R2. In Euclidean space, an observer at constant ρ moves in a circle of length

2πρ. Euclidean time evolution on a circle is related to the computation of thermodynamic

quantities for the original physical system (we will return to this in section 2.3). Namely,

Tr [e−βH ] is the partition function at temperature T = 1/β. β is the length of the Euclidean

time evolution and the trace is related to the fact that we are on a circle. This suggests that

3We can say that the interior lies behind a Black Shield (or Schwarz Schild in German).

6



Figure 1: Left: Penrose diagram of a black hole formed by gravitational collapse. Right: Zoomed-
in view of the flat near-horizon region, with the trajectory of a uniformly accelerated observer at
ρ = a−1.

the temperature that an accelerated observer feels is

Tproper =
1

2πρ
=

a

2π
=

~
kBc

a

2π
(2.12)

where a is the proper acceleration and we also restored all the units in the last formula.

Though this argument seems a bit formal, one can check that a physical accelerating ther-

mometer would actually record this temperature [46].

Now, this is the proper temperature felt by an observer very close to the horizon. Notice

that it is infinite at ρ = 0 and it decreases as we move away. This decrease in temperature

is consistent with thermal equilibrium in the presence of a gravitational potential. In other

words, for a spherically symmetric configuration, in thermal equilibrium, the temperature

obeys the Tolman relation [48]

Tproper(r)
√
−gττ (r) = constant. (2.13)

This formula tracks the redshifting of photons as they climb a gravitational potential. It says

that locations at a higher gravitational potential feel colder to a local observer. Using the

polar-like coordinates (2.10) and (2.12) we indeed get a constant equal to 1/(2π). Since this
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formula is valid also in the full geometry (2.7), we can then use it to find the temperature

that an observer far from the black hole would feel. We simply need to undo the rescaling of

time we did just above (2.8) and go to large r where gtt = −1 to find the temperature

T = Tproper(r � rs) =
1

4πrs
. (2.14)

This is the Hawking temperature. It is the temperature measured by an observer that is

more than a few Schwarzschild radii away from the black hole.

2.3 The Euclidean black hole

We will now expand a bit more on the connection between Euclidean time and thermody-

namics. We will then use it to get another perspective on thermal aspects of black holes.

Sometimes Euclidean time tE is called imaginary time and Lorentzian time t is called real

time because of the Wick rotation t = itE mentioned above.

There are different ways to see that imaginary-time periodicity is the same as a temper-

ature. In a thermal state, the partition function is

Z = Tr [e−βH ] . (2.15)

Any observable such as Tr [O(t)O(0)e−βH ] is periodic under t → t + iβ, using O(t) =

eiHtOe−iHt and the cyclic property of the trace.

A more general argument in quantum field theory is to recast the trace as a path integral.

Real-time evolution by e−iHt corresponds to a path integral on a Lorentzian spacetime, so

imaginary-time evolution, e−βH , is computed by a path integral on a Euclidean geometry.

The geometry is evolved for imaginary time β, and the trace tells us to put the same boundary

conditions at both ends and sum over them. A path integral on a strip of size β with periodic

boundary conditions at the ends is the same as a path integral on a cylinder. Therefore in

quantum field theory Z = Tr e−βH is calculated by a path integral on a Euclidean cylinder

with θ = θ+ β. Any observables that we calculate from this path integral will automatically

be periodic in imaginary time.

Similarly, in a black hole spacetime, the partition function at inverse temperature β is

calculated by a Euclidean path integral. The geometry is the Euclidean black hole, obtained

from the Schwarzschild metric (2.7) by setting t = itE ,

ds2
E =

(
1− rs

r

)
dt2E +

dr2

1− rs
r

+ r2dΩ2
2 , tE = tE + β . (2.16)

In the Euclidean geometry, the radial coordinate is restricted to r > rs, because we saw that

r− rs is like the radial coordinate in polar coordinates, and r = rs is the origin − Euclidean
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Figure 2: The Euclidean Schwarzschild black hole. The Euclidean time and radial directions have
the geometry of a cigar, which is smooth at the tip, r = rs. At each point we also have a sphere of
radius r.

black holes do not have an interior. In order to avoid a conical singularity at r = rs we need

to adjust β to

β = 4πrs . (2.17)

This geometry, sometimes called the ‘cigar,’ is pictured in fig. 2. The tip of the cigar is the

horizon. Far away, for r � rs, there is a Euclidean time circle of circumference β, which is

the inverse temperature as seen by an observer far away. Notice that in the gravitational

problem we fix the length of the circle far away, but we let the equations determine the right

radius in the rest of the geometry.

The Euclidean path integral on this geometry is interpreted as the partition function,

Z(β) = Path integral on the Euclidean black hole ∼ e−IclassicalZquantum . (2.18)

It has contributions from both gravity and quantum fields. The gravitational part comes

from the Einstein action, I, and is found by evaluating the action on the geometry (2.16).

The quantum part is obtained by computing the partition function of the quantum fields on

this geometry (2.16). It is important that the geometry is completely smooth at r = rs and

therefore the quantum contribution has no singularity there. This is related to the fact that

an observer falling into an evaporating black hole sees nothing special at the horizon, as in

the classical theory.

Then applying the standard thermodynamic formula to the result,

S = (1− β∂β) logZ(β) (2.19)

gives the generalized entropy (2.4). We will not give the derivation of this result but it uses

that we are dealing with a solution of the equations of motion and that the non-trivial part
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of the variation can be concentrated near r = rs [49].

2.4 Evaporating black holes

Hawking radiation carries energy away to infinity and therefore reduces the mass of the black

hole. Eventually the black hole evaporates away completely — a primordial black hole of

mass 1012 kg, produced in the early universe, would evaporate around now. The Hawking

temperature of a solar mass black hole is 10−7 K and its lifetime is 1064 years. The spacetime

for this process is described in figures 3 and 4.

The Hawking process can be roughly interpreted as pair creation of entangled particles

near the horizon, with one particle escaping to infinity and the other falling toward the

singularity. This creation of entanglement is crucial to the story and we will discuss it in

detail after introducing a few more concepts.
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Stages of Black Hole Evaporation

(a) After stellar collapse, the
outside of the black hole is
nearly stationary, but on the
inside, the geometry contin-
ues to elongate in one di-
rection while pinching toward
zero size in the angular direc-
tions.

(b) The Hawking process creates entangled pairs, one trapped
behind the horizon and the other escaping to infinity where
it is observed as (approximate) blackbody radiation.

The black hole slowly shrinks
as its mass is carried away by
the radiation.

(c) Eventually the angular directions shrink to zero
size. This is the singularity. The event horizon also
shrinks to zero.

(d) At the end there is a smooth spacetime containing
thermal Hawking radiation but no black hole.

Figure 3
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Figure 4: Penrose diagram for the formation and evaporation of a black hole. Spatial slices
(a)-(d) correspond to the slices drawn in fig. 3.
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3 The black hole as an ordinary quantum system

The results we reviewed above suggest that the black hole can be regarded as an ordinary

system, obeying the laws of thermodynamics. More precisely, as an object described by a

finite, but large, number of degrees of freedom that obey the ordinary laws of physics, which

in turn imply the laws of thermodynamics.

In fact, this has been such an important idea in the development of the subject that we

will call it the “central dogma.”

Central Dogma

As seen from the outside, a black hole can be described in terms of a quantum system

with Area/(4GN ) degrees of freedom, which evolves unitarily under time evolution.

Using this hypothesis, the black hole and the whole spacetime around it, up to some surface
denoted by the dotted circle, can be replaced by a quantum system. This quantum system
interacts with the outside via a unitary Hamiltonian.

Let us make some remarks about this.

• Notice that it is a statement about the black hole as seen from the outside. There is

no statement about the black hole interior, yet.

• The statement about the number of degrees of freedom is primarily a statement about

the logarithm of the dimension of the Hilbert space. We make no distinction between

qubits, fermions or other degrees of freedom. What is important is that the Hilbert

space has finite dimension.

• The degrees of freedom that appear in this statement are not manifest in the gravity

description. Some researchers have tried to see them as coming from the thermal

atmosphere, by putting a cutoff, or “brick wall” at some Planck distance from the

horizon [50, 51]. Unfortunately, such ideas remain vague since such cutoffs are not

manifest from the gravity point of view, which treats the horizon as a smooth surface.
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• Unitary evolution implies that we have a Hamiltonian that generates the time evolu-

tion. Again, this Hamiltonian is not manifest in the gravity description. The gravity

description has a Hamiltonian constraint, which determines the bulk evolution. But

this constraint is a property of the full spacetime, we do not know how to pull out a

purely exterior part. In principle, the Hamiltonian could be very general. But the fact

that it gives rise to the gravity evolution constrains some properties. For example, it

should be strongly interacting and generate a very chaotic evolution.

• We said that the black hole evolves unitarily. This is when we surround the black

hole by a reflecting wall and we consider the full system inside this wall. However,

if the black hole lives in an asymptotically flat geometry, it is convenient to draw an

imaginary surface surrounding the black hole and call everything inside the “quantum

system” that appears in the central dogma. This quantum system is then coupled with

the external degrees of freedom living outside this surface. We usually think of the

region outside the imaginary surface as a quantum system in a fixed spacetime, where

we ignore large fluctuations of the background, though we can still consider weakly

interacting gravitons. The full coupled evolution should be unitary. In other words,

in this context, the gravity answers are compared to those of a quantum system that

is coupled to the degrees of freedom far from the black hole at this imaginary cutoff

surface. Here we are imagining that this surface is at a few Schwarzschild radii from

the black hole.

• Often people ask: how is a black hole different from a hot piece of coal? This central

dogma is saying that, as long as you remain outside, it is not fundamentally different,

in the sense that both are governed by a unitary Hamiltonian and have a finite number

of degrees of freedom. Unlike a piece of coal, the black hole has an interior shrouded by

an event horizon, and making it fully compatible with the exterior view is a non-trivial

problem that has not been completely solved.

• The name “central dogma” was borrowed from biology where the central dogma talks

about the information transfer from DNA and RNA to proteins. Here it is also a

statement about information − quantum information. It involves a certain dose of

belief, because it is not something we can derive directly from the gravity description.

We can view it as an unproven assumption about the properties of a full theory of

quantum gravity. It is also something that is not accepted by some researchers. In

fact, Hawking famously objected to it.

• Notice that this statement is in stark contrast with a naive reading of the spacetime

geometry. The spacetime geometry can be viewed as having two “asymptotic” regions.

One is the obvious region outside, and the other is the future region near the singularity.

See figure 5. Of course, the semiclassical gravity theory does not tell us how to evolve
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past this singularity, or even whether such evolution makes sense. From this point

of view the interior is something we cannot access from the outside, but there is no

obvious reason why some quantum information could not be lost here. In other words,

if a black hole is a “hole in space” where things can get in and get lost, then the central

dogma would be FALSE. In fact, this is one reason why some people think it is indeed

false.

• Both the results on black hole thermodynamics, as well as the results on fine-grained

entropies we will discuss later, are true properties of a theory of gravity coupled to

quantum fields and do not require the validity of the central dogma. In other words,

we are not assuming the central dogma in this review − we are providing evidence for

it.

(a) (b)

Figure 5: The skeptics’ view: The diagram of an evaporating black hole is conceptually similar to
one where we split off a baby universe, so that in the future we have two regions, the future region of
the original universe, and the future of the interior, which is singular.

3.1 Evidence from string theory for the central dogma

Though we said that the “central dogma” is an unproven assumption, there is a great deal

of very non-trivial evidence from string theory. String theory is a modification of Einstein

gravity that leads to a well defined perturbative expansion and also some non-perturbative

results. For this reason it is believed to define a full theory of quantum gravity.
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One big piece of evidence was the computation of black hole entropy for special extremal

black holes in supersymmetric string theories [52]. In these cases one can reproduce the

Bekenstein-Hawking formula from an explicit count of microstates. These computations

match not only the area formula, but all its corrections, see e.g. [53]. Another piece of

evidence comes from the AdS/CFT correspondence [54–56], which is a conjectured relation

between the physics of AdS and a dual theory living at its boundary. In this case, the black

hole and its whole exterior can be represented in terms of degrees of freedom living at the

boundary. There is also evidence from matrix models that compute scattering amplitudes

in special vacua [57]. We will not discuss this further in this review, since we are aiming to

explain features which rely purely on gravity as an effective field theory.

4 Fine-grained vs coarse-grained entropy

There are two notions of entropy that we ordinarily use in physics and it is useful to make

sure that we do not confuse them in this discussion.

The simplest to define is the von Neuman entropy. Given the density matrix, ρ, describing

the quantum state of the system, we have

SvN = −Tr[ρ log ρ] (4.1)

It quantifies our ignorance about the precise quantum state of the system. It vanishes for a

pure state, indicating complete knowledge of the quantum state. An important property is

that it is invariant under unitary time evolution ρ→ UρU−1.

The second notion of entropy is the coarse-grained entropy. Here we have some density

matrix ρ describing the system, but we do not measure all observables, we only measure a

subset of simple, or coarse-grained observables Ai. Then the coarse-grained entropy is given

by the following procedure. We consider all possible density matrices ρ̃ which give the same

result as our system for the observables that we are tracking, Tr[ρ̃Ai] = Tr[ρAi]. Then we

compute the von Neumann entropy S(ρ̃). Finally we maximize this over all possible choices

of ρ̃.

Though this definition looks complicated, a simple example is the ordinary entropy used

in thermodynamics. In that case the Ai are often chosen to be a few observables, say the

approximate energy and the volume. The thermodynamic entropy is obtained by maximizing

the von Neumann entropy among all states with that approximate energy and volume.

Coarse-grained entropy obeys the second law of thermodynamics. Namely, it tends to

increase under unitary time evolution.

Let us make some comments.

• The von Neumann entropy is sometimes called the “fine-grained entropy”, contrasting

it with the coarse-grained entropy defined above. Another common name is “quantum

16



entropy.”

• Note that the generalized entropy defined in (2.4) increases rapidly when the black hole

first forms and the horizon grows from zero area to a larger area. Therefore if it has

to be one of these two entropies, it can only be the thermodynamic entropy. In other

words, the entropy (2.4) defined as the area of the horizon plus the entropy outside is

the coarse-grained entropy of the black hole.

• Note that if we have a quantum system composed of two parts A and B, the full

Hilbert space is H = HA × HB. Then we can define the von Neumann entropy for

the subsystem A. This is computed by first forming a density matrix ρA obtained by

taking a partial trace over the system B. The entropy of ρA can be non-zero, even if

the full system is in a pure state. This arises when the original pure state contains

some entanglement between the subsystems A and B. In this case S(A) = S(B) and

S(A ∪B) = 0.

• The fine-grained entropy cannot be bigger than the coarse-grained entropy, SvN ≤
Scoarse. This is a simple consequence of the definitions, since we can always consider ρ

as a candidate ρ̃. Another way to say this is that because Scoarse provides a measure of

the total number of degrees of freedom available to the system, it sets an upper bound

on how much the system can be entangled with something else.

It is useful to define the fine-grained entropy of the quantum fields in a region of space.

Let Σ be a spatial region, defined on some fixed time slice. This region has an associated

density matrix ρΣ, and the fine-grained entropy of the region is denoted

SvN (Σ) ≡ SvN (ρΣ) . (4.2)

If Σ is not a full Cauchy slice, then we will have some divergences at its boundaries. These

divergences are not important for our story, they have simple properties and we can deal

with them appropriately. Also, when Σ is a portion of the full slice, SvN (Σ) is generally

time-dependent. It can increase or decrease with time as we move the slice forwards in time.

The slice Σ defines an associated causal diamond, which is the region that we can determine

if we know initial data in Σ, but not outside Σ. The entropy is the same for any other slice

Σ̃ which has the same causal diamond as Σ, see figure 6.

4.1 Semiclassical entropy

We now consider a gravity theory which we are treating in the semiclassical approximation.

Namely, we have a classical geometry and quantum fields defined on that classical geometry.
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Figure 6: Given a region Σ of a spatial slice, shown in red, we can define its causal diamond
to be all points where the evolution is uniquely determined by initial conditions on Σ. The
alternative slice Σ̃ defines the same causal diamond. The von Neumann entropies are also
the same.

Associated to a spatial subregion we can define its “semiclassical entropy,” denoted by

Ssemi-cl(Σ) . (4.3)

Ssemi-cl is the von Neumann entropy of quantum fields (including gravitons) as they appear

on the semiclassical geometry. In other words, this is the fine-grained entropy of the density

matrix calculated by the standard methods of quantum field theory in curved spacetime. In

the literature, this is often simply called the von Neumann entropy (it is also called Smatter

or Soutside in the black hole context).

5 The Hawking information paradox

The Hawking information paradox is an argument against the “central dogma” enunciated

above [58]. It is only a paradox if we think that the central dogma is true. Otherwise,

perhaps it can be viewed as a feature of quantum gravity.

The basic point rests on an understanding of the origin of Hawking radiation. We can

first start with the following question. Imagine that we make a black hole from the collapse

of a pure state, such as a large amplitude gravity wave [59]. This black hole emits thermal

radiation. Why do we have these thermal aspects if we started with a pure state? The

thermal aspects of Hawking radiation arise because we are essentially splitting the original

vacuum state into two parts, the part that ends up in the black hole interior and the part

that ends up in the exterior. The vacuum in quantum field theory is an entangled state. As

a whole state it is pure, but the degrees of freedom are entangled at short distances. This

implies that if we only consider half of the space, for example half of flat space, we will get
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a mixed state on that half. This is a very basic consequence of unitarity and relativistic

invariance [47]. Often this is explained qualitatively as follows. The vacuum contains pairs

of particles that are constantly being created and annihilated. In the presence of a horizon,

one of the members of the pair can go to infinity and the other member is trapped in the

black hole interior. We will call them the “outgoing Hawking quantum” and the “interior

Hawking quantum.” These two particles are entangled with each other, forming a pure state.

However if we consider only one member, say the outgoing Hawking quantum, we fill find it

in a mixed state, looking like a thermal state at the Hawking temperature (2.14). See figure

3b and figure 4.

This process on its own does not obviously violate the central dogma. In fact, if we had

a very complex quantum system which starts in a pure state, it will appear to thermalize

and will emit radiation that is very close to thermal. In particular, in the early stages, if

we computed the von Neumann entropy of the emitted radiation it would be almost exactly

thermal because the radiation is entangled with the quantum system. So it is reasonable

to expect that during the initial stages of the evaporation, the entropy of radiation rises.

However, as the black hole evaporates more and more, its area will shrink and we run

into trouble when the entropy of radiation is bigger than the thermodynamic entropy of

the black hole. The reason is that now it is not possible for the entropy of radiation to

be entangled with the quantum system describing the black hole because the number of

degrees of freedom of the black hole is given by its thermodynamic entropy, the area of the

horizon. In other words, if the black hole degrees of freedom together with the radiation

are producing a pure state, then the fine-grained entropy of the black hole should be equal

to that of the radiation Sblack hole = Srad. But this fine-grained entropy of the black hole

should be less than the Bekenstein-Hawking or thermodynamic entropy of the black hole,

Sblack hole ≤ SBekenstein−Hawking = Scoarse−grained.

If the central hypothesis were true, we would expect that the entropy of radiation would

need to start decreasing at this point. In particular, it can never be bigger than the Bekenstein

Hawking entropy of the old black hole. Notice that we are talking about the von Neumann or

fine-grained entropy of the radiation. Then, as suggested by D. Page [60,61], the entropy of

the radiation would need to follow the curve indicated in figure 7, as opposed to the Hawking

curve. The time at which SBekestein−Hawking = Srad is called the Page time.

Now let us finish this discussion with a few comments.

• Note that, as the black hole evaporates, its mass decreases. This is sometimes called

the “backreaction” of Hawking radiation. This effect is included in the discussion. And

it does not “solve” the problem.

• When the black hole reaches the final stages of evaporation, its size becomes comparable

to the Planck length and we can no longer trust the semiclassical gravity description.
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Figure 7: Schematic behavior of the entropy of the the outgoing radiation. The precise shape
of the lines depends on the black hole and the details of the matter fields being radiated.
In green we see Hawking’s result, the entropy monotonically increases until tEnd, when the
black hole completely evaporates. In orange we see the thermodynamic entropy of the black
hole. If the process is unitary, we expect the entropy of radiation to be smaller than the
thermodynamic entropy. If it saturates this maximum, then it should follow the so called
“Page” curve, denoted in purple. This changes relative to the Hawking answer at the Page
time, tPage, when the entropy of Hawking radiation is equal to the thermodynamic entropy
of the black hole.

This is not relevant since the conflict with the central dogma appeared at the Page

time, when the black hole was still very big.

• The argument is very robust since it relies only on basic properties of the fine-grained

entropy. In particular, it is impossible to fix the problem by adding small corrections

to the Hawking process by slightly modifying the Hamiltonian or state of the quantum

fields near the horizon [62–64]. In other words, the paradox holds to all orders in

perturbation theory, and so if there is a resolution it should be non-perturbative in the

gravitational coupling GN .

• We could formulate the paradox by constantly feeding the black hole with a pure

quantum state so that we exactly compensate the energy lost by Hawking radiation.

Then the mass of the black hole is constant. Then the paradox would arise when this

process goes on for a sufficiently long time that the entropy of radiation becomes larger

than the entropy of the black hole.

• One could say that the gravity computation only gives us an approximate description
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and we should not expect that a sensitive quantity like the von Neumann entropy

should be exactly given by the semiclassical theory. In fact, this is what was said until

recently. We will see however, that there is a way to compute the von Neuman entropy

using just this semiclassical description.

We have described here one aspect of the Hawking information paradox, which is the

aspect that we will see how to resolve. We will comment about other aspects in the discussion.

6 A formula for fine-grained entropy in gravitational systems

As we mentioned above, the Bekenstein Hawking entropy formula should be viewed as the

coarse-grained entropy formula for the black hole, since it increases under time evolution.

This is clear when the black hole first forms and has not yet had time to emit Hawking

radiation.

Surprisingly there is also a gravitational formula for the von Neumann or fine-grained

entropy [5,6,9,10]. It is also given by a formula that involves a generalized entropy, with an

area plus the entropy of fields outside. The only difference is in the choice of the dividing

surface. Roughly the idea is that we choose a surface such that the generalized entropy is

minimized. This minimal value is the fine-grained entropy,

S ∼ min

[
Area

4GN
+ Soutside

]
. (6.1)

Now, (6.1) captures the spirit of the formula, but the precise formula is slightly more

complicated. The reason is the following. A surface is a codimension-2 object. This means

that it has two dimensions less than that of the full spacetime. In our case it is localized

along one of the spatial dimensions and also in time. We are looking for a surface that

minimizes (6.1) in the spatial direction but maximizes it in the time direction. So we really

should look for “extremal surfaces” by moving them both in space and in time. If there are

many extremal surfaces we should find the global minimum. Another equivalent definition

is the following maxi-min construction [65, 66]. First choose a spatial slice (a Cauchy slice)

and find the minimal surface. Then find the maximum among all choices of the Cauchy slice.

Then a more precise version of the formula is [5, 6, 9, 10]

S = minX

{
extX

[
Area(X)

4GN
+ Ssemi-cl(ΣX)

]}
, (6.2)

where X is a codimension-2 surface, ΣX is the region bounded by X and the cutoff surface,

and Ssemi-cl(ΣX) is the von Neumann entropy of the quantum fields on ΣX appearing in the
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