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1 Introduction and Page curve

In these notes, we will explore the recent Island proposal to compute the Entropy of a

black hole system. This consist in a formula for the (generalized) von-Neumann entropy 1

S(⇢I) = min
I

extI

✓
Area(@I)

4GN
+ S(⇢̃I[R)

◆
. (1.1)

The details of this formula will be given later. The above proposal was first motivated by

AdS/CFT [1] and then argued from saddles of the gravitational path integral by using the

replica trick [2, 3]. The goal of these notes is to give an introduction to the proposal and

its use for the computation of the entropy of a black hole system.

Before going on it is worth to remember what the information paradox is and how it is

related to the entropy. We remember that the black hole is radiating as first observed by

Hawking. This radiation can be understood as a production of particle/anti-particle state

near the horizon [4]. We can imagine that the particle escapes from the black hole, while

the anti-particle, due to tunneling, is eaten by the black hole (for a more careful analysis

based on this idea see [5]). As a conclusion an observer at infinity will e↵etely experience

a thermal state due to the radiation of the black hole. The expected number of radiating

1We explicitly write here GN in the formula: in the following we will use GN = 1 where not necessary

for the understanding.
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3 Towards a proof for the Islands formula

The aim of this section is to give a conceptual explanation of where the island formula

comes from. Concretely, we would like to motivate the following

Claim. The deviation between the results for BH/Hawking radiation entropies of the

semi-classical analysis of Hawking on the one hand and the geometric prediction from the

island formula on the other can be understood as a consequence of contributions to Renyi

entropies that are produced by certain saddle points of the gravitational path integral,

known as replica wormholes.

Said di↵erently, the island formula gives a better approximation to the entropy of black

holes than Hawking’s computation, because it accounts for contributions to the gravita-

tional path integral that were previously missing. To understand what this claim means,

we approach it through the following four questions

• What does the gravitational path integral compute? To begin with, we

need to think about the question what the geometric gravitational path integral

computes in the first place. Answering this question is the goal of Section 3.1. The

key take home message here will be that one should think about the gravitational path

integral as a coarse grained description of gravity computing averages over ensembles

of transition amplitudes as opposed to overlaps between individual microstates.

• How should we determine entanglement entropy? After having reflected upon

what the main tool at our disposal, i.e. the gravitational path integral, can do for us

in general, we are ready to think about how it can be applied to solve the particular

problem at hand, namely to compute the entropy of Hawking radiation. In search

for an answer to this question, Section 3.2 will cover how replica geometries nat-

urally arise in path integral computations of entanglement entropies independently

of whether the system under consideration contains dynamical gravity or not. We

will then see that if we turn on dynamical gravity in a certain region of space time,

new configurations will emerge that can be interpreted as wormholes connecting the

gravitational regions of di↵erent replicas. Including these “replica wormholes” into

the computation of the entropy will allow us to recover the Page curve and resolve

the tension between unitary time evolution and thermal evaporation of black holes.

• When do we recover the geometrical island prescription? The prescription

of averaging over di↵erent geometries in the path integral computation of the en-

tropy at first glance seems to be incompatible with the island formula. How can

an extremisation procedure in a fixed geometry give the same result as an average

over all possible geometries? In Section 3.3, we will discuss how the island formula

arises from the path integral as semi-classical limit of the entropy in a regime where

maximally connected replica geometries are dominant.
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• Is the information paradox solved now? Finally, we will take a step back and

think about where we have arrived at. We try to assess, at least to the extend

permitted by the length of these notes and the knowledge of their authors, what has

been achieved and what question remain unanswered.

3.1 What does the gravitational Path Integral compute?

Let us consider a simple toy model for the evaporation of a black hole (the setup is motivated

by [16], Section 2): Suppose we have a black hole B that we describe with states from a

Hilbert space HB. We would like to couple the black hole to some quantum mechanical

system R with Hilbert space HR, which we think of as describing radiation far away form

the black hole.

Lets say we start o↵ in a state

| i
1
= | 1i ⌦ |1i 2 HB ⌦HR, (3.1)

in which there has not jet been any radiation emitted. As time goes on, more and more

radiation will be emitted and our system will evolve into an increasingly complicated state

with more and more entanglement between the black hole and the radiation. So after a

while, | i
1
should evolve into a state of the form

| ik =
1
p
k

kX

i=1

| ii ⌦ |ii (3.2)

with large k. As an observer outside the black hole, we only have access to the radiation,

so our measurements can only inform us about data encoded in the density matrix

⇢k = TrB | ik h |k =
1

k

kX

i,j=1

|ji hi| h i| ji . (3.3)

The transition amplitudes h i| ji are to be computed via a putative gravitational path

integral over all geometries relevant for the gravitational system that describes our black

hole.

Ideally, we of course would like to be in the luxurious situation of having a fully

microscopic description of gravity, in which case h i| ji would simply be a complex number.

If, however, we work with some e↵ective coarse grained description of gravity, then the

amplitudes that we write down should rather be thought of as random variables of which

we can only compute ensemble averages

*
h i| ji

+
.

The question of which of the two the gravitational path integral computes is of key

importance if we would like to compute the von Neumann entropy of ⇢k i.e. the entropy of

the Hawking radiation.

Indeed, if we work with orthonormal states | ii then in the case that the path integral

would actually compute precise transition amplitudes between microscopic states, we would
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directly get

⇢k =
1

k

kX

i=1

|ii hi| and thus Sk = �Tr(⇢k log ⇢k) = log k. (3.4)

As time goes on and k steadily increases, we would thus expect the entropy of the Hawk-

ing radiation to monotonously grow, incompatibly with the Page curve and unitary time

evolution, qualitatively reproducing the problems encountered in Hawking’s computation

of the entropy.

In the case where the path integral only computes ensemble averages however, we can

imagine that our states are only orthonormal on average but that higher moments of the

distributions of the transition amplitudes are in fact non vanishing. Then, the correct way

of computing the entropy is

Sk =

*
�Tr(⇢k log ⇢k)

+
6= �Tr(h⇢ki logh⇢ki). (3.5)

Qualitatively, we can easily convince ourselves that this has a chance of explaining the

Page transition and reproducing the results of the island formula: Imagine the norms of

the black hole states are all identically distributed s.t. h|| i||
n
i ⇠ 1. Furthermore, suppose

the o↵-diagonal transition amplitudes are suppressed by some small parameter ✏ such that

h|| i||
n
h j | lii

m
⇠ ✏

m. Then, to linear order in ✏, the nth Renyi entropy of ⇢k is given by

*
Tr[⇢nk ]

+
⇠

*
kX

i=1

|| i||
2n

kn
+
X

i 6=j

| h i| ji |
2
1

kn
+ . . .

+
⇠

1 + ✏
2
k

kn�1
(3.6)

For 1 ⌧ k ⌧
1

✏2 , the Renyi entropy and thus also the von Neumann entropy should

match with the expectation from eq. (3.4). However, as k grows and eventually becomes

comparable to 1

✏2 , a phase transition occurs and the contributions of the o↵-diagonal tran-

sition amplitudes become dominant. A careful analysis shows, that this transition can be

identified as the Page transition.

3.2 How should we determine entanglement entropy?

We now explore the consequences of the ensemble average interpretation of the gravitational

path integral given in Section 3.1 for the computation of the entropy of Hawking radiation.

For this, we first review the computation of von Neumann entropy from Renyi entropies in

QFT using replicas and twist fields. Then, we turn on dynamical gravity and discuss how

the computation qualitatively changes.

3.2.1 Density matrices, replica geometries & symmetric product orbifolds

Recall that we can think about states in QFT as prepared by path integrals with an

open cut. Two prominent examples for this that appeared several times throughout the

workshop seminar are the Minkowski vacuum |0i and the thermofield double state |�iTFD

of the eternal Schwarzschild black hole, see Figure 8.
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Figure 8: Pictorial representation of the Minkowski vacuum and Schwarzschild thermo

field double state.

In this framework, operators are represented by path integrals over regions with two

cuts. Especially, one can obtain the density matrix of a pure state by taking the disjoint

union of two copies of the path integral that prepares the state. Tracing over the Hilbert

space associated to the complement of a region R, generates the density matrix ⇢R relevant

for the computation of the entanglement entropy of that region. Graphically, performing

the trace corresponds to gluing, as illustrated for the Minkowski vacuum in Figure 9.

Figure 9: Density matrix associated to tracing over the complement of a region R in the

Minkowski vacuum.

As already reviewed last week, the von Neumann entropy associated to a density matrix

⇢R is defined as

SR = Tr(⇢R log ⇢R) (3.7)

and can conveniently be computed by analytic continuation in n of the nth Renyi entropy

(i.e. Tr(⇢nR)) as

SR = lim
n!1

Tr(⇢nR)/(Tr(⇢R))
n
� 1

n� 1
. (3.8)
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With canonical normalisations, Tr(⇢R) should just be 1. However, below it will be con-

venient to allow for unnormalised density matrices and devide out the normalisation in

the computation of the entropy explicitly. In the path integral picture, we can compute

Renyi entropies by taking n copies of the path integral that defines our density operator

and gluing together consecutive cuts as shown in Figure 10. Note in particular that the

emergent geometry fMn has Zn symmetry.

Figure 10: Computing Tr[⇢3R] for the density matrix associated to tracing over the com-

plement of a region R in the Minkowski vacuum.

We can use a trick to evaluate the Renyi entropy through the path integral of n copies

of our original QFT on the quotient Mn = fMn/Zn as opposed to a single copy of the

QFT on the replicated geometry. We simply need to cut the replica geometry and impose

boundary conditions on the cuts that relate the di↵erent copies to each other as shown in

Figure 11. The cuts end on branch points that should be thought of as created through

the insertion of local operators, namely the twist fields associated to the Sn symmetry that

permutes the di↵erent copies of the QFT.

3.2.2 Turning on gravity. . . in some places

The approach to states, operators and entropy taken in the previous subsection appears to

be incompatible with dynamical gravity. It relies a lot on the perspective that geometry is

something fixed and non dynamical. However, we can give up the rigidity of the geometry
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Figure 11: Computing Tr[⇢3R] for the density matrix associated to tracing over the com-

plement of a region R in the Minkowski vacuum by using three copies of our original theory

together with a branchcut that relates them to each other.

in regions far away from the cuts that define states and operators. Said the other way

round, instead of providing all of the geometry connecting the cuts, we can choose to

specify the geometry only in some region fMf
n around them, in which we consider gravity

to be non dynamical, and then leave boundary conditions at the boundary @ fMf
n of the

fixed geometry region, which we consider to be dynamically completed by gravity with

some fMg
n to the full replica geometry fM (or more precisely, a gravitational path integral

over di↵erent fMg
n). This procedure is illustrated in Figure 12.

Figure 12: fMf
2
consists of two copies of a region far away from the black hole, where

gravity is negligible. Each copy has a hole that should be filled out by gravity. A simple

way to fill the holes is by gluing in disks. For better visualisation of the additional gluing

that happens at the branchcuts, we drew some continuous curve in the replica geometry.

At this stage, our discussion of what the gravitational path integral computes (Section

– 19 –



(a) Maximally disconnected. (b) Two connected components.

(c) Maximally connected.

Figure 13: Di↵erent contributions to hTr[⇢3R]i.

3.1) becomes important: If we (wrongfully) identify the Renyi entropies with Tr(h⇢Rin), the

dynamical gravity regions of the di↵erent replicas cannot connect to each other. Evaluating

the path integral through saddle point approximation, we will ultimately recover Hawkings

result for the entropy and run into the quantum information paradox.

If, however, we compute the Renyi entropies as

hTr(⇢nR)i =

Z

@ fMg
n'@ fMf

n

D fMg
n

Z

� on fMn

D�e�S[fMg
n,�]

, (3.9)

then the gravitational regions of di↵erent replicas are able to connect to each other, leading

to qualitatively completely di↵erent new contributions to the entropy. Some examples are

visualised in Figure 13.

In simple toy models, where the gravitational path integral can explicitly be evaluated,

one can verify exactly that the extra contributions from geometries that connect di↵erent

replicas lead to an overall entropy that recovers the Page curve and is in agreement with

unitary time evolution [16]. However, here we shall take a di↵erent approach to convincing

ourselves that the paradox is indeed resolved, namely by showing emergence of the island

formula.

– 20 –



3.3 When do we recover the geometrical island prescription?

We will now motivate the island formula from the qualitative description of von Neumann

entropy computations given in the previous subsection. The glaring first question that

needs to be resolved for this is: How can the island formula description of computing the

entropy from a single fixed extremal geometry be compatible with the statement that the

entropy is rather to be computed as a weighted sum over all geometries?

The answer to this question is saddle point approximation. In fact, applying saddle

point approximation to the path integral over geometries in eq. 3.9 directly gives us an

extremisation prescription

hTr(⇢nR)i ⇡ min

0

B@ ext
@ fMg

n'@ fMf
n

0

B@
Z

� on fMn

D�e�S[fMg
n,�]

1

CA

1

CA , (3.10)

analogous to that of the island formula. Here, the extremisation is over the e↵ective action

Seff [fMg
n] = � log

0

B@
Z

� on fMn

D�e�S[fMg
n,�]

1

CA (3.11)

for the geometry that can be obtained by integrating out the matter propagating on it.

This already looks more like the island formula, but there are still two issues. First, we

are extremising over some replica geometries and not over islands in the original geometry.

Second, we are extremising the e↵ective action for the geometry and not the generalised

entropy.

To make some progress towards a solution of the two issues, we should think about

what saddles can really appear in (3.10). The qualitative picture, that we would like to

paint here is that there are two e↵ects competing against each other to determine which

geometry is favoured. These are

• E↵ect 1: Gravity likes it simple. In quantum gravity, geometries with nontriv-

ial homotopy groups should be suppressed by the loop counting parameter 1/GN .

Thus, the gravitational contribution to the action tries to make fMg
n as close to being

contractible as possible.

• E↵ect 2: Matter likes it pure. Forget about gravity for a moment and go back to

the computation of the entanglement entropy of some region R without it. The purer

the state that we are in, the larger Tr[⇢nR] should be. For sure, increasing the size

of the region R makes the state under consideration more pure. But in the replica

geometry picture, increasing the size of R is doing nothing else but increasing the

region in which the replicas are glued together. Said di↵erently, it makes the di↵erent

replicas more connected to each other. Hence, if we turn on gravity, we should expect

that the matter path integral contribution to the e↵ective action of fMg
n should favour

geometries where the replicas are highly connected.
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(a) Taking two spheres. (b) Adding punctures and gluing.

Figure 14: Construction of topologically simple replica geometries from spheres.

If we take these two e↵ects as our guidelines, the rules of the game for determining the

relevant contributions to the gravitational path integral are the following: For a given fMf
n,

we should focus on those geometries fMg
n that for a fixed number of connected components

1  k  n have the simplest topology. These can be constructed by taking k spheres,

punching holes into those spheres for each replica that they connect and then gluing the

replicas to the holes as illustrated in Figure 14.

We already now that if we only take the maximally disconnected contribution into

account, i.e. if we are in a regime where e↵ect 1 dominates and e↵ect 2 is negligible, we

will reproduce Hawkings answer for the entropy. But as time goes by, the entropy of the

radiation grows (in fact, this is what led to the information paradox in the first place) or

said di↵erently, the density matrix of the radiation will become less and less pure. But this

means that e↵ect two at the same time becomes more and more relevant until at some point

the entropical gain from strengthening the connection between di↵erent replicas becomes

larger than the topological cost of adding punctures to a sphere! Thus, our simple minded

qualitative discussion in fact predicts a transition where Hawkings answer for the radiation

gradually should be replaced by contributions to the Renyi entropy coming from more and

more connected geometries. This looks promising. But, is this transition really the Page

transition?

Answering this question in general by studying the whole transition process in detail is

extremely challenging. However, we can do something simpler, which should already give

us a good idea of whether we are on the right track: We know that the transition that we

would like to understand starts from Hawkings answer for the entropy. But where does

it take us from there? Since at late times, we end up in a regime dominated by a single

saddle – namely the fully connected one – answering this question should not be harder

than Hawking’s original computation.

A sequence of partition functions on di↵erent geometries seems to be hard to analyt-

ically continue. Partition functions coming from a sequence of actions on a single fixed

geometry however are easy to deal with: We just need to analytically continue the actions.

Luckily, the fully connected geometry fMn is Zn symmetric. Thus, we can work with the

orbifold M = fMn/Zn, which is an n-indepent geometry with a boundary I that itself has
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a boundary @I, as illustrated in Figure 15. The boundary of the boundary is a singularity

of the orbifold geometry that arises from fixed points of the Zn action.

Figure 15: This figure illustrates the replica symmetry quotienting for fM3.

Note that the shape of the region I is not fixed by the arguments we gave. We should

determine it by extremising Tr(⇢nR). To be more precise, we are interested in the linear

term in the expansion

Tr(⇢nR)/(Tr(⇢R))
n = 1 + (n� 1)SR + . . . , (3.12)

so what we should really extremise is SR[I]. Now for a fixed I there are two contributions

to SR[I]:

First of all, there is a conical singularity on @I: Going in a circle around @I, we get

rotated only by an angle of 2⇡/n instead of 2⇡. But this means that the scalar curvature

must have a singularity

R = Rsmooth + �(@I)(1�
1

n
) (3.13)

on @I (since the angular defect of a sphere is given by the integral of the scalar curvature

in its interior). Since we integrate over n-copies of the fields of our theory, including the

metric, this leads to an overall contribution of

n · (1�
1

n
)
Area[@I]

4GN
= (n� 1)

Area[@I]

4GN
(3.14)

from the Einstein-Hilbert term in the action.

Secondly, we need to insert twist fields that relate di↵erent copies of our theory not

only on the boundary of R but also on @I. But once we have done this, we can forget

about where the twist fields originally came from and then realise that the path integral

we are doing is, up to the term from the curvature singularity mentioned above, the same

one that we would have done if we wanted to compute Tr[⇢R[I ] on a fixed geometry. But

we know what the order (1 � n) contribution would be in that case: The fixed geometry

entropy Sf [R [ I].

Combining the two contributions, we can therefore conclude

SR[I] =
Area[@I]

4GN
+ Sf [R [ I]. (3.15)
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In other words, the entropy that we compute using the maximally connected replica worm

hole is the entropy that the island formula predicts.

3.4 Is the information paradox solved now?

With the island formula and its replica wormhole derivation, physicists have made a lot of

progress towards solving the quantum information paradox. The discussion of whether the

paradox is truly solved though is however still not completely settled. The arguments given

in favour for the replica wormhole / island solution in these notes can of course only be a

small appetizer that should motivated interested readers to study the original literature.

Furthermore, detailed arguments against it are beyond the reach of these notes. Hence, the

concluding remarks made here can impossibly give proper account of the current status of

the discussion.

Instead, let us end here by making four simple remarks that might be useful for the

reader

• Some critics argue that both Hawking’s computation and the island proposal are

wrong and that instead the origin of the paradox is that the entanglement entropy

of the Hawking radiation as considered in those approaches to the problem is an ill

defined observable. [17, 18]

• So far, the extend to which the validity of the replica wormhole approach to entropy

has been tested in concrete models is somewhat limited and mostly restricted to

simple low dimensional theories (such as JT and other dilaton gravities).

• Even if the replica worm hole approach is correct, it does not explain what the

true underlying degrees of freedom are that the gravitational path integral is coarse

gaining over: Figuring out quantum gravity (obviously) remains on our collective to

do list! However, its correctness does imply that a deep understanding of quantum

gravity is not necessary in order to make black hole thermodynamics consistent with

quantum mechanics.

• If one accepts the island proposal and its replica worm hole derivation, the paradox is

indeed solved. A paradox is a situation where two statements appear to be true, yet

contradictory. In the case of the quantum information paradox, these two where the

statement of unitary time evolution in quantum mechanics and the statement that

the entanglement entropy of Hawking radiation stays large even after the black hole

has radiated away. The second statement turned out to be wrong.
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