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Overview

PBHs form in the early Universe from mechanisms other than stellar collapse. They can make up

the entirety of DM if their masses are

10−16M⊙ ≲MPBH ≲ 10−11M⊙. (1)

Forming them requires large density fluctuations, which could be produced during inflation. Infla-

tion naturally produces light PBHs (natural here is not used in the technical sense, these models

are fine-tuned).

Optional content

Additional details and content that is not essential to the discussion are presented in gray

boxes throughout the notes. These can be skipped.

The CMB puzzles

Suppose the Universe is dominated by a perfect fluid with p = wρ and the spacetime is FLRW,

ds2 = −dt2 + a2
(

dr2

1− kcr2
+ r2dΩ2

)
. (2)

The constant kc is the spatial curvature, a free parameter. The evolution of a is determined by

H2 =
ρ

3M2
p

− kc
a2
, (3)

Ḣ +H2 = − 1

6M2
p

(ρ+ 3p). (4)

The first equation is Ω− 1 = Ωk, with Ωk = kc/(aH)2. We know from CMB that Ωk ≪ 1, but for

conventional sources (aH)−1 grows, so we must have kc ≪ 1. This is the flatness problem. Let us

set kc = 0.

The maximum distance a photon can travel from the Big Bang until time t is (adτ = dt)

∆r = ∆τ =

∫ t

0

dt′

a(t′)
∝ 1

aH
∝ aq, q =

1

2
(1 + 3w). (5)

We see that indeed (aH)−1 grows for w ≥ 0. A patch with size Rp(t0) = R0 today will have size

Rp(t) = a(t)R0 at time t. But the horizon grows as aq, so any patch that is connected today must

have been disconnected at some point in the past. CMB measurements show temperature is almost

uniform across the visible Universe. How this equilibrium was achieved if the patch was causally

disconnected at some point is known as the horizon problem.

Inflation consists of a phase with decreasing (aH)−1. The observable Universe would be causally

connected at some point in the past, and Ωk is driven to a small value, solving both problems.

Such a period requires q < 0, or w ≤ −1/3.
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Single-field inflation

A phase with w ≤ −1/3 is easy to achieve. Consider a single field minimally coupled to gravity,

L =
1

2
M2

pR+
1

2
(∂µϕ)

2 − V (ϕ). (6)

The pressure and energy density are (assuming the field is homogeneous)

ρ =
1

2
ϕ̇2 + V (ϕ), (7)

p =
1

2
ϕ̇2 − V (ϕ). (8)

Thus, if the kinetic energy is negligible we have p/ρ = −1. The picture is that the field is slowly

rolling towards the minimum of the potential. The slow-roll parameters measure how negligible the

kinetic energy is,

ϵ = − Ḣ

H2
=

1

2

ϕ̇2

M2
pH

2
, η = −1

2

ϵ̇

Hϵ
. (9)

Inflation happens for ϵ < 1. The regime ϵ ≪ 1 and |η| ≪ 1 is known as slow-roll inflation (from

CMB observations we know the field must have been in slow-roll on these scales). Once the field is

close to the minimum of the potential inflation ends.

The power spectrum

To describe inhomogeneities and CMB anisotropies, we perturb the metric and stress-energy tensor.

Cosmological perturbations

The perturbed metric is

ds2 = −a2(1 + 2φ)dτ2 + 2a2∂iBdx
idτ + a2

[
(1− 2ψ)δij + 2∂i∂jE + hij

]
dxidxj . (10)

Vector perturbations are not produced in single-field inflation to leading order, and quickly

decay with the expansion, so we neglect them. Tensor modes are transverse and traceless,

hi i = 0 and ∂ih
i
j=0.

The only degree of freedom in the matter sector is the scalar field ϕ, so all perturbations of

the stress-energy tensor can be expressed in terms of δϕ and its derivatives.

Perturbations mix with each other when we change coordinates. If we switch xµ → xµ + ξµ,

the metric perturbations change as

φ→ φ+ aHα+ α′, (11)

ψ → ψ − aHα, (12)

E → E + β, (13)

B → B − α+ β′. (14)
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The τi component of the stress-energy tensor is

δT τ
i = (ρ+ p)∂i(δv +B) =

1

a
∂iδq. (15)

Under a coordinate transformation,

δq → δq − a(ρ+ p)α. (16)

From the stress-energy tensor for a scalar field, we find that

δq = −ϕ̇δϕ. (17)

By choosing α and β appropriately, we can make E = B = 0. In the absence of anisotropic

stress (the traceless ij component of the stress-energy tensor), one component of Einstein’s

equations reads

(E′ −B)′ + 2aH(E′ −B) + ψ − φ = 0. (18)

Thus, in the absence of anisotropic stress (which is indeed the case for single-field inflation)

and in Newtonian gauge we have ψ = φ.

The field perturbation δϕ and Newtonian potential ψ can be combined into a single gauge-invariant

variable (independent of coordinate changes)

−Rk =
H

ρ+ p
ϕ̇δϕk + ψk (19)

known as the comoving curvature perturbation. This is not surprising since during inflation there

is only one scalar degree of freedom. This variable can be connected to observables such as energy

density fluctuations δρ/ρ or CMB temperature anisotropies δT , and is conserved for k ≪ aH. The

amplitude is given by the dimensionless power spectrum

PR(k) =
k3

2π2
|Rk|2. (20)

This variable evolves according to the Mukhanov-Sasaki equation

d2

dN2
Rk + (3− ϵ− 2η)

d

dN
Rk +

k2

a2H2
Rk = 0, (21)

with dN = Hdt the number of e-folds. The fact that R is conserved outside the horizon is clear

from here.

Canonical quantization

It is convenient to write the Mukhanov-Sasaki equation in conformal time and in terms of
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the variable v = −zR, with z = ϕ′/H. The result is

v′′k +

(
k2 − z′′

z

)
vk = 0, (22)

with
z′′

z
= a2H2

[
2 +O(ϵ)

]
, (23)

where O(ϵ) denotes slow-roll suppressed terms.

The Lagrangian that gives rise to this equation is

L =
1

2

[
(v′)2 − (∇v)2 + z′′

z
v2
]

(24)

The conjugate momentum to v is π = v′. We can then quantize v in the usual way by

imposing the equal-time commutation relations

[v̂(τ,x), π̂(η,y)] = iδ(x− y). (25)

In Fourier space,

v̂(τ,x) =

∫
d3k

(2π)3

[
âkvk(τ)e

ikx + â†kv
⋆
k(τ)e

−ikx
]
. (26)

Defining the vacuum state is tricky because the Hamiltonian is time-dependent. The key

point to notice now is that, in the far past, the z′′/z term in the equation of motion is

negligible, and we have

v′′k + k2vk = 0. (27)

Thus, deep within the horizon the mode functions look just like those of Minkowski,

vk≫aH =
e−ikτ

√
2k

. (28)

Asking that the vacuum in the far past coincides with the Minkowski vacuum, we find the Bunch-

Davies initial condition

Rk = − e−ikτ

2Mpa
√
kϵ
, (29)

valid for k ≫ aH. There are two solutions on superhorizon scales k ≪ aH,

Rk(N) ≃ Rk(Nc) +
d

dN
Rk(Nc)

∫ N

Nc

exp

{∫ N̂

Nc

[
2η(Ñ)− 3

]
dÑ

}
dN̂, (30)

where Nc is the time of horizon crossing. In standard slow-roll inflation, the second one is a decaying

mode. Fluctuations freeze at horizon crossing k = aH and

PR =
k3

2π2

∣∣∣∣ e−ikτ

2Mpa
√
kϵ

∣∣∣∣2 = H2

8π2M2
p ϵ
. (31)
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Black hole mass and abundance

The correct calculation of these quantities is an open question. What follows is just an educated

estimate.

The PBH mass is of the order of the mass contained in a Hubble patch at the time of collapse,

MPBH = γ
4

3
πr3Hρ = 4πγ

M2
p

H
, (32)

where γ ≃ O(1). We assume that the PBHs form after inflation, during a stage with generic

equation of state p = wρ which ends at time tr (e.g. reheating). For generality, we do not assume

that entropy is conserved in this stage, but it is in the subsequent radiation era. We assume collapse

occurs instantaneously at tk, when the fluctuation with wavenumber k = a(tk)H(tk) re-enters the

horizon.

We can determine how the Hubble scales in the first stage from the Friedmann equation and use

entropy conservation g⋆s(T )a
3T 3 = const. afterwards. We find, after some algebra,

MPBH = 4πγM2
p

(
π2

90
g⋆(Tr)

T 4
r

M2
p

) 1
1+3w

(
1

k3
g⋆s(T0)T

3
0

g⋆s(Tr)T 3
r

) 1+w
1+3w

, (33)

Let β = ρPBH/(γρ) denote the ratio of the energy density in a Hubble patch that ends up in the

form of PBHs to the total energy density at the time of collapse. Following the same procedure,

the fraction of dark matter in the form of PBHs today fPBH = Ω0
PBH/Ω

0
DM is

fPBH = γβ
Ω0
γ

Ω0
DM

[(
g⋆s(Tr)

g⋆s(T0)

)1/3Tr
T0

] 1+9w
1+3w

(
M2

pk
2

T 4
r

90

π2g⋆(Tr)

) 3w
1+3w

. (34)

For w = 1/3, both equations become independent of Tr and we have the scaling MPBH ∝ k−2.

Light (unconstrained) PBHs are produced when small-scale fluctuations re-enter the horizon.

The collapse fraction

Assuming that fluctuations δ = δρ/ρ are Gaussian (which is not correct) and according to Press-

Schechter (also not correct),

β =
1√
2πσ2

∫ ∞

δc

e−δ2/(2σ2)dδ. (35)

By means of the gradient expansion (not perturbation theory), we can relate the overdensity δ to

R at leading order in k2/(aH)2,

δ = −4(1 + w)

5 + 3w

(
1

aH

)2

e−5R/2∇2eR/2 ≃ 2(1 + w)

5 + 3w

(
k

aH

)2

R. (36)

The variance smoothed over a scale k is then

σ2 =
4(1 + w)2

(5 + 3w)2

∫
dq

q

(
q

k

)4

PR(q)W
2(q/k), (37)
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where we takeW (x) = e−x2/2
√

2/π. We are effectively killing off small scales. Superhorizon modes

are frozen, so we are only interested in the initial amplitude required to form a black hole later

on, once the collapse dynamics take place. By taking a scale-invariant spectrum with the CMB

amplitude A♭ = 2 ·10−9, one can check that the amount of PBHs produced is completely negligible.

We need to enhance the spectrum. Suppose the spectrum has a sharp peak at k♯ (remember,

k♯ ≃ 1014Mpc−1 must be large so we obtain unconstrained masses)

PR = k♯A♯δ(k − k♯). (38)

The integrals can then be done explicitly. We find that, to get fPBH = 1, we need A♯ ≃ 10−2.

Enhancing the spectrum

We saw that in single field inflation the spectrum was PR ∝ 1/ϵ. Thus, slowing down the inflaton

will produce an enhancement. It turns out this formula cannot be used to estimate the spectrum,

because slow-roll breaks down.

Consider a potential with an inflection point. The inflaton is initially in slow-roll, providing a flat

spectrum on large scales. As it reaches the inflection point, it decelerates, decreasing ϵ, but also

making η ≳ 3 and changing the decaying mode to a growing mode (so the modes now briefly evolve

outside the horizon!). In the subsequent phase it accelerates again with η ≲ 1 until ϵ = 1 and

inflation ends. The Mukhanov-Sasaki equation must be solved numerically.

The peak is on small scales, so these models naturally produce unconstrained PBHs and are con-

sistent with the CMB. However, they are extremely fine-tuned.

The phase with η ≳ 3 is known as ultra-slow-roll. We refer to the subsequent phase, which turns

out to be the most important one for non-Gaussianities, as constant-roll.

Beyond the naive estimate

A few comments are in order

• This treatment is outdated. We do not care if there is a large overdensity, but rather if the

mass distribution fits inside its Schwarzschild radius. We should adopt threshold statistics

on the compaction function instead of δ, defined as the mass excess over the areal radius in a

region of size R(r, t) ≡ a(t)r,

C(r, t) = 2GNδM(r, t)

R(r, t)
. (39)

The compaction function

For spherically-symmetric collapse, the metric is

ds2 = −dt2 + a2
[

dr2

1−K(r)r2
+ r2dΩ2

]
(40)

This spacetime is isotropic but not homogeneous (otherwise it would be maximally

symmetric and K would be constant, as in FLRW). This metric is not valid throughout
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the collapse, but only initially, while the perturbation that will later induce collapse is

still superhorizon.

We expect a black hole to form whenever C ∼ 1, with some wiggle room in the exact

number depending on the shape of the overdensity. We can calculate the mass excess

by integrating the energy density,

δM(r, t) =

∫
δρ(r̂, t) dV

= 3M2
pH

2

∫ R

0
δ(r̂, t)4πR̂2dR̂

= 3M2
pa

3H2

∫ R

0
δ(r̂, t)4πr̂2dr̂, (41)

where we have switched to spherical coordinates, used δ = δρ/ρ and the Friedmann

equation ρ = 3M2
pH

2. The compaction function is then

C(r, t) = 2GN

ar
3M2

pa
3H2

∫ r

0
δ(r̂, t)4πr̂2dr̂

=
3(aH)2

r

∫ r

0
δ(r̂, t)r̂2dr̂, (42)

using M2
p = (8πGN)

−1. Inflationary observables are computed using the following

metric instead, which includes the nonlinear generalization of R in comoving gauge,

ds2 = −dt2 + a2e2R(r̂)
(
dr̂2 + r̂2dΩ2

)
. (43)

Demanding that this metric be equal to (40) and comparing the three-dimensional

Ricci (on hypersurfaces of constant time) obtained for each, we find the relation

2

a2
1

r2
d

dr

[
r3K(r)

]
= R3 = − 8

a2
e−5R(r̂)/2∇2eR(r̂)/2. (44)

In cosmology, we typically expand Einstein’s equations in powers of the perturbations

(for instance R) and solve them order by order. An alternative is to use the so-

called gradient expansion, where we expand in powers of k2/(aH)2 and keep everything

fully non-linear in the perturbations instead. This is useful if we want to describe

superhorizon physics, because the results are then exact in the limit k → 0.

Assuming radiation and using eqs. (42), (44), and (36), we obtain

C(r, t) = 3(aH)2

r

∫ r

0
δ(r̂, t)r̂2dr̂

=
2

3
r2K(r). (45)
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Demanding both of our metrics to be equal we find the conditions

r = eR(r̂)r̂ and
dr2

1−K(r)r2
= e2R(r̂)dr̂2. (46)

Thus, differentiating the first expression and using the second one,

r2K(r) = −∂r̂R(r̂)r̂
[
2 + ∂r̂R(r̂)r̂

]
. (47)

Finally, we obtain the relation between the compaction function and the curvature

perturbation,

C(r, t) = −2

3
r∂rR

(
2 + r∂rR

)
, (48)

where we have dropped the hats for simplicity. In principle we can connect the statistics

of R to those of C.

• The calculation of the threshold for collapse is highly nontrivial. Numerical simulations yield

δc ∼ Cc ∼ 0.4. This quantity depends on the curvature profile, but defining a universal

threshold for C seems possible.

• The fluctuations are heavily not Gaussian. The inflaton has some intrinsic non-Gaussianity.

It is nonlinearly related to R, which generates more. And R is nonlinearly related to δ (or

C), which generates even more.

Non-Gaussianities

To calculate non-Gaussianities we need to expand the inflaton action beyond quadratic

order in perturbations and use the in-in formalism. The nonlinear generalization of

R is shown in eq. (43) in comoving gauge (δϕ = 0). The calculation can also be

performed in the flat gauge, where there is no Newtonian potential in the metric and

the only degree of freedom is δϕ. The catch is we lose the connection to the conserved,

gauge-invariant R.

The calculation is most easily done in flat gauge, with a later transformation to co-

moving gauge. There are then two sources of non-Gaussianity. The first is intrinsic

non-Gaussianity of δϕ, arising from the self interaction terms

S3 =

∫
d4xa3

[
− V3

6
δϕ3 +O(ϵ)

]
. (49)

These are proportional to time derivatives of η. Gravitational interactions are slow-roll

suppressed. The gauge transformation can be obtained to all orders by using the δN

formalism. At leading order in the gradient expansion, the result is

ηR = log
(
1− ηδϕ/

√
2ϵ
)
, (50)

with η evaluated shortly after the USR phase ends. For a smooth USR phase, the
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self-interactions of the inflaton are negligible and the non-Gaussianity comes mainly

from the gauge transformation, which leads to an exponential tail in the PDF of R,

P (R) =

∣∣∣∣dδϕdR
∣∣∣∣P (δϕ) → P (R) ∼ eηR. (51)

Since this PDF is valid only at leading order in the gradient expansion, and collapse

actually depends on the derivatives of R through the compaction function, it is not

clear at present how to reconcile both approaches.

Forming a PBH is quite difficult, so they are rare events. Non-Gaussianities are impor-

tant because when we form a PBH we integrate only over the tail of the distribution,

see eq. (35). As we mentioned earlier, using δ is not good enough, however, and we

have to deal with C instead. Since R is non-linearly related to C, the latter becomes

non-Gaussian.

• Press-Schechter assumes we only care if the overdensity is above a certain threshold. What

you actually want is to have a local peak, so we should not just impose δ > δc (or the

equivalent for the compaction function), but also that the first derivative vanishes and the

Hessian is negative definite. The PDF becomes much more complex.

Peak theory

Schematically, in the context of peak theory the number density of peaks is given by

an integral

np(C) =
∫
P (C,∇C,∇2C)d(C)d(∇C)d(∇2C). (52)

The compaction function C and its derivatives are heavily correlated, so the PDF does

not separate and this is a difficult integral even assuming Gaussianity. The problem of

finding the statistics for Gaussian δ was solved by BBKS many decades ago. The case

of C has been worked out recently for Gaussian R.

• For stiff equations of state these estimates are fine, but for matter domination other effects

come into play. Collapse takes longer, and nonsphericity and angular momentum begin to

play a role.

• Except for MD, these considerations should not alter the fact that A♯ ≃ 10−2, so as an order

of magnitude estimate the naive treatment is correct. It is important to keep in mind that

the picture is not complete, however.

The induced GW signal

Let us expand tensor modes in Fourier space

hij(x) =

∫
d3k

(2π)3
(h+k e

+
ij + h×k e

×
ij), (53)
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where esij are transverse, traceless polarization tensors. At the linear level, in the absence of

anisotropic stress, tensor modes decouple from the other degrees of freedom and propagate freely.

At second order, their equation of motion is sourced by terms quadratic in scalar modes,

hs′′k + 2aHhs′k + k2hsk = Ss
k, (54)

where H = aH and we have written derivatives in conformal time (′ = d/dτ with dτ = dt/a). The

source is, in Newtonian gauge,

Ss
k =

∫
d3p

(2π)3
esij(k)pipj

[
8ψpψ|k−p| +

16

3(1 + p/ρ)

(
ψp +

ψ′
p

H

)(
ψ|k−p| +

ψ′
|k−p|

H

)]
. (55)

The equation can be solved by means of Green’s function techniques.

Solution for tensor modes

The solution to the equation of motion is

hsk(τ) =

∫ τ

0
dτ̂Gk(τ, τ̂)S

s
k(τ̂), (56)

where the Green’s function is

Gk(τ, τ̂) =
h1(τ)h2(τ̂)− h1(τ̂)h2(τ)

h′1(τ̂)h2(τ̂)− h′2(τ̂)h1(τ̂)
. (57)

and h1 and h2 are two linearly independent solutions to the free equation of motion. As-

suming radiation, aH = 1/τ and the solutions turn out to be very simple trigonometric

functions. In Newtonian gauge, in the absence of anisotropic stress and in the presence of a

perfect fluid, the metric perturbation obeys the equation

φ′′
k + 3

(
1 +

p

ρ

)
aHφ′

k +
p

ρ
k2φk = 0. (58)

The solutions are Bessel functions. The initial conditions on superhorizon scales can be

related to R computed at the end of inflation,

φk(0) =
3 + 3w

5 + 3w
Rk. (59)

The solution can then be written as

hsk =
1

k2

∫
d3p

(2π)3
esij(k)pipjRpR|k−p|Ik(τ, p, |k − p|), (60)

where I is a time integral of the Green’s function and the scalar modes, and R is the frozen,

superhorizon, curvature perturbation computed at the end of inflation. The GW energy

density is given by

ΩGW =
1

24

k2

a2H2
⟨Ph⟩, (61)
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where the brackets denote a time average which must be taken due to the stochasticity of

the signal. The power spectrum is

⟨hskhtp⟩ =
2π2

k3
Ph(k)(2π)

3δstδ3(p+ k). (62)

Squaring h, assuming that R is Gaussian and using Wick’s theorem, we find

Ph(τ, k) =

∫ ∞

0
dy

∫ 1+y

|1−y|
dz

[
4y2 − (1 + y2 − z2)2

8yz

]2
PR(ky)PR(kz)I

2(τ, ky, kz), (63)

where we have performed one of the angular integrals, and switched variables to y = p/k

and z = |k − p|/k for the two remaining integrals.

The sin and cos in Ik drop out after averaging. We define

1

2
J2(y, z) = lim

kτ→∞

k2

a2H2
⟨Ik(τ, ky, kz)2⟩

[
4y2 − (1 + y2 − z2)2

8yz

]2
. (64)

The final result for the GW energy density after accounting for the redshift is

ΩGW(T0, k) =
Ωγ(T0)

48

g⋆(T )

g⋆(T0)

(
g⋆s(T0)

g⋆s(T )

)4/3 ∫ ∞

0
dy

∫ 1+y

|1−y|
dz PR(ky)PR(kz)J

2(y, z), (65)

with J2 a complicated function resulting from the geometry of the momenta, the time evolution

of the scalar modes, and the Green’s function. This integral can be done explicitly for a sharp

spectrum. A peak in the scalar spectrum induces a peak in the GW spectrum. For unconstrained

PBHs, this peak falls in the LISA band.
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