

3. Novalis Meeting – Update BUW

Frederic Braun fbraun@uni-wuppertal.de
Dirk Lützenkirchen-Hecht dirklh@uni-wuppertal.de

FESM - Status

- Repair of the XYZ-Stage
 - Rods for X- and Y-axis had mechanical play in linear guides
 - → New linear guides fixed the problem
- Baked out at 120 °C
 - Pressure in main chamber: $8 \cdot 10^{-10}$ mbar
- → FESM fully operational again

New NbTiN samples

- Two NbTiN samples from Marc, Lea and Isabel
 - 60 nm NbTiN + 15 nm AlN on Si-Wafer
 - Both as-deposited and annealed at 900 °C
- Planned analysis:
 - XRD (first results)
 - OP / AFM (first results)
 - SEM
 - FESM

XRD - Influence of annealing NbTiN

- NbTiN (111)-Peak shifts to larger angle
 - $Nb_{1-x}Ti_xN$ recombinating to larger x
 - Could partly explain creation of Nb phases
- Sharper NbTiN (111)-Peak indicates growth in grain size

$$\rightarrow$$
 L_{ad,111} = (67.60 ± 49.17) Å to
L_{900 °C,(111)} = (268.96 ± 1.80) Å

- Growths of NbTiN (200)-Phase
 - $L_{900^{\circ}C,(200)} = (269.82 \pm 17.69) \text{Å}$

XRD - Influence of annealing NbTiN

- Annealing leads to creation of elemental Nb-phases
- Both Ti- and Nb-peaks increase
- → Decomposition of NbTiN to Nb and Ti
- → Annealing under nitrogen atmosphere could slow down decomposition process

XRD - Influence of annealing NbTiN

- Few unknown Peaks
 - AlN layer is too thin
 - Annealing should show changes in oxide phases
 - no TiN or NbN phases
- Grazing incidence XRD could show in which depth unknown structures are
- Potential TiNb (130) -peak at (66.47 ± 0.01) °
 - Theoretical angle at 66.821°
 - → 0.45 % bigger lattice parameter due to stress
 - → Annealing does not reduce stress

Optical profilometer

- White light irradiation and spectral reflection
 - Chromatic aberration
- Scanning range up to 20 x 20 cm²
- 2 μm lateral resolution
- 3 nm vertical resolution
- For higher resolution the AFM can be used

- FE sensitive to peaks on the surface
 - → R_z relevant for determining the surface roughness for FE applications
- R_z is the maximum peak to valley height

OP – Surface roughness of NbTiN thin films

As-deposited

- $R_a = (23.80 \pm 0.62) \, \text{nm}$
- $R_Z = (165.50 \pm 12.51) \,\text{nm}$ over $10 \times 10 \,\text{mm}^2$

Annealed 900 °C

- $R_a = (16.13 \pm 1.01) \, \text{nm}$
- $R_Z = (116.30 \pm 18.25) \,\text{nm}$ over $10 \times 10 \,\text{mm}^2$

valuesDoes not influence overall

 R_z too much

Particles or defects on

surface yield high $R_{z,i}$

 \rightarrow Annealing reduces R_a by 32.22 % and R_z by 29.73 %

Summary and Outlook

- Grain size of NbTiN significantly increases due to annealing
- Surface roughness reduced by ≈ 30 %
 - → Smaller surface peaks increases onset-field of FE
- XRD data shows decomposition of NbTiN due to annealing
 - Annealing under nitrogen atmosphere could slow down the process
- Looking forward to:
 - FESM measurements
 - I-V-curves
 - Constant current mapping
 - SEM and EDX measurements
 - Further analysis on XRD and OP data

Thank you for your attention!

