ULTRA-HIGH-ENERGY PARTICLES FROM VACUUM DECAY

DESY Particle Theory Seminar

June 3, 2024

BIBHUSHAN SHAKYA

Image Credit: betibup33/Shutterstock.com

(LAST YEAR)

 $\Lambda_I \sim 10^{11} {
m GeV}$

S

VEW

THE TACHYONIC HIGGS AND THE INFLATIONARY UNIVERSE

The Tachyonic Higgs and the Inflationary Universe Bibhushan Shakya 2301.08754 [HEP-PH]

Higgs is tachyonic on this side of the potential

Exponential growth of particle number / fluctuations / inhomogeneities

Many phenomenological aspects: ultra high frequency gravitational waves, primordial microblack holes, non-gaussianities/CMB "hotspots"...

[work in progress with Aleksandr Chatrychan, Gudrid Moortgat-Pick, Geraldine Servant , Julia Ziegler, Sven Ha...]

TODAY

Aspects of Particle Production from Bubble Dynamics at a First Order Phase Transition

2308.16224 [HEP-PH]

Bibhushan Shakya

On Particle Production from Phase Transition Bubbles

Henda Mansour^{1, 2, 3} and Bibhushan Shakya¹ 2308.13070 [HEP-PH]

Nonthermal Heavy Dark Matter from a First-Order Phase Transition

Gian F. Giudice 1 , Hyun Min Lee 2 , Alex Pomarol 3,4 , Bibhushan Shakya 5

2406.XXXXX [HEP-PH]

2403.03252 [HEP-PH]

Leptogenesis via Bubble Collisions

Martina Cataldi^{1,2} and Bibhushan Shakya²

THEORY: The history of the Universe is, essentially, an evolution from a highly symmetric state to what we see today: a series of symmetry breaking steps, some likely involving first order phase transitions (FOPT)

THEORY: The history of the Universe is, essentially, an evolution from a highly symmetric state to what we see today: a series of symmetry breaking steps, some likely involving first order phase transitions (FOPT)

EXPERIMENT: Gravitational waves (GW) provide a novel, powerful probe to explore the early epochs of the Universe. FOPTs a well motivated and widely studied source of primordial GWs

THEORY: The history of the Universe is, essentially, an evolution from a highly symmetric state to what we see today: a series of symmetry breaking steps, some likely involving first order phase transitions (FOPT)

EXPERIMENT: Gravitational waves (GW) provide a novel, powerful probe to explore the early epochs of the Universe. FOPTs a well motivated and widely studied source of primordial GWs

BSM APPLICATIONS: opportunities to connect to open questions in BSM physics: dark matter, baryon asymmetry, neutrino masses...

THEORY: The history of the Universe is, essentially, an evolution from a highly symmetric state to what we see today: a series of symmetry breaking steps, some likely involving first order phase transitions (FOPT)

EXPERIMENT: Gravitational waves (GW) provide a novel, powerful probe to explore the early epochs of the Universe. FOPTs a well motivated and widely studied source of primordial GWs

BSM APPLICATIONS: opportunities to connect to open questions in BSM physics: dark matter, baryon asymmetry, neutrino masses...

UNIQUENESS: A unique configuration that allows us to probe energies far higher than any energy reached in our cosmic history

FIRST ORDER PHASE TRANSITION (FOPT)

Transition of a **background scalar field** from its **false** (metastable, unbroken) vacuum to its **true** (stable, broken) vacuum state

Bubbles of true vacuum nucleate in the background of the false vacuum, **expand and percolate**, converting all space into the true vacuum configuration

ENERGY DISSIPATION

Involves release of (significant) latent energy stored in the false vacuum

(could be the dominant energy component of the Universe)

Where does this energy go?

ENERGY DISSIPATION

ENERGY DISSIPATION

RUNAWAY BUBBLE CONFIGURATIONS

If there is **no efficient energy dissipation*** into the plasma, **bubble walls continue to accumulate the released latent energy** from the false vacuum, and **accelerate to higher boost factors**.

*can occur in several cases: supercooled transitions, transition with a light /no gauge bosons, quantum tunnelling in vacuum)

RUNAWAY BUBBLE CONFIGURATIONS

If there is **no efficient energy dissipation*** into the plasma, **bubble walls continue to accumulate the released latent energy** from the false vacuum, and **accelerate to higher boost factors**.

*can occur in several cases: supercooled transitions, transition with a light /no gauge bosons, quantum tunnelling in vacuum)

RUNAWAY BUBBLE CONFIGURATIONS

PARTICLE PRODUCTION AT FOPTS

- **Significant effect:** compared to gravitational wave production (particle couplings are much larger than the gravitational coupling)
- Highly inhomogeneous process: Cannot be calculated in the same way as particle production from homogeneous phase transitions / changing backgrounds
- Not very well studied in the literature: only a handful of papers with semi-analytic estimates in idealized scenarios, underlying physics not well understood

Watkins+Widrow Nucl.Phys.B 374 (1992) Konstandin+Servant 1104.4793 [hep-ph] Falkowski+No 1211.5615 [hep-ph]

FIRST ORDER PHASE TRANSITION

TERMINOLOGY

- FOPT: scalar field φ obtains a nonzero vev v_φ
- Energy difference between vacua: $\Delta V \equiv V_{\langle \phi \rangle = 0} V_{\langle \phi \rangle = v_{\phi}} = c_V v_{\phi}^4$
- Energy fraction in false vacuum $\alpha = \frac{\Delta V}{\rho_{\rm rad}}$
- T_n, T_* : Temperature of thermal bath at beginning, end of phase transition
- Bubbles formed with wall thickness $l_w(\sim 1/v_{\phi})$ and initial radius $R_0(\sim 1/T_n)$
- Bubble wall velocity v_w , boost factor γ_w
- H: Universe expansion rate; $H \sim T^2 * / M_{Pl}$ (radiation dominated Universe)
- β : (inverse) timescale for completion of phase transition: expressed as a fraction of Hubble scale β/H (~10-10,000)
- R*: typical size of bubbles at collision; $R_* \approx 1/\beta$

PARTICLE PRODUCTION FROM BACKGROUND FIELD DYNAMICS

An inevitable phenomenon

A changing background can produce particles out of vacuum

(Gravitational particle production, Schwinger effect, Hawking radiation...)

PARTICLE PRODUCTION FROM BACKGROUND FIELD DYNAMICS

An inevitable phenomenon

A changing background can produce particles out of vacuum

(Gravitational particle production, Schwinger effect, Hawking radiation...)

FOPTs involve nontrivial dynamics of the background field:

- Bubbles nucleate
 - Bubble walls propagate in space
 - Bubble walls collide
- Excitations/oscillation of the background field after collision

PARTICLE PRODUCTION FROM BACKGROUND FIELD DYNAMICS

An inevitable phenomenon

A changing background can produce particles out of vacuum

(Gravitational particle production, Schwinger effect, Hawking radiation...)

FOPTs involve nontrivial dynamics of the background field:

- Bubbles nucleate
- Bubble walls propagate in space
- Bubble walls collide
- Excitations/oscillation of the background field after collision

"Irreducible" form of particle production: does not depend on nature/existence of a particle bath

> (Additional production mechanisms possible due to interactions with a thermal bath; will discuss these later)

I. BUBBLE NUCLEATION

SHAKYA, 2308.16224

Consider a nucleated bubble with critical radius in the thin-wall approximation.

For $k \gg R_c^{-1}$ can use the homogeneous approximation, calculate particle number densities using standard homogeneous approach (Bogoliubov transform)

Number density of particles from bubble nucleation (accounting for diffusion into rest of volume)

- Negligible effect due to volume dilution
- No access to energies >> inverse wall thickness

II. BUBBLE EXPANSION

SHAKYA, 2308.16224

A PROPER CALCULATION: SINGLE PROPAGATING BUBBLE WALL

Consider a particle that becomes massive through the phase transition

Klein Gordon equation
$$\left(-\frac{\partial^2}{\partial t^2} + \frac{\partial^2}{\partial x^2}\right)\psi(t,x) = \frac{m_{\psi}^2}{4}\left(1 - \tanh\left(\frac{v_w t - x}{l_w}\right)\right)^2\psi(t,x)$$

Mass term changes over both space and time; cannot perform a mode decomposition and solve for Bogoliubov coefficients analytically

Resolution: perform change of variables $x_1 = \frac{1}{\sqrt{1+v_w^2}}(v_w t - x), \quad x_2 = \frac{1}{\sqrt{1+v_w^2}}(t + v_w x)$

$$\left[\left(\frac{1-v_w^2}{1+v_w^2}\right)\left(-\frac{\partial^2}{\partial x_2^2}+\frac{\partial^2}{\partial x_1^2}\right)-\frac{4v_w}{1+v_w^2}\frac{\partial}{\partial x_1}\frac{\partial}{\partial x_1}\right]\phi(t,x)=m_{\psi}^2(x_1)\phi(t,x)$$

Condition for particle production out of vacuum:

$$p_2^2(v_w^4 - 1) > m_{\psi}^2(1 - v_w^2)$$

Cannot be satisfied for v<1!

II. BUBBLE EXPANSION

SHAKYA, 2308.16224

- Bubble wall moving at constant velocity in vacuum cannot produce particles (checked with an explicit Bogoliubov transformation calculation, but also obvious in rest frame)
- Runaway bubbles accelerate, accelerating system can produce particles! Using the equivalence principle, produced particle number density from accelerating bubble walls:

- Can produce particles that are very energetic (in the plasma frame); however
- Since bubble radius is of order (inverse) Hubble, this contribution also tends to be subdominant to other stages

III. BUBBLE COLLISION

The most energetic stage of the phase transition

Moment of collision: scalar field gets a sharp "kick" to higher field value.

Two qualitatively different possibilities for subsequent evolution:

III. BUBBLE COLLISION

The most energetic stage of the phase transition

Moment of collision: scalar field gets a sharp "kick" to higher field value.

Two qualitatively different possibilities for subsequent evolution:

III. BUBBLE COLLISION

The most energetic stage of the phase transition

Moment of collision: scalar field gets a sharp "kick" to higher field value.

Two qualitatively different possibilities for subsequent evolution:

III. BUBBLE COLLISION

The most energetic stage of the phase transition

Moment of collision: scalar field gets a sharp "kick" to higher field value. Two qualitatively different possibilities for subsequent evolution:

In both cases (elastic and inelastic collisions), eventually:

walls disappear, scalar field oscillations around the true vacuum, which slowly radiates into light quanta that the field couples to

Watkins+Widrow Nucl.Phys.B 374 (1992) Konstandin+Servant *1104.4793* [hep-ph] *Falkowski+No 1211.5615* [hep-ph]

Use the **effective action formalism**:

Watkins+Widrow Nucl.Phys.B 374 (1992)

Probability of particle production:

imaginary part of the effective action of the background field

$$\mathcal{P} = 2 \operatorname{Im} \left(\, \Gamma[\phi] \, \right)$$

Effective action: generating functional of 1PI Green functions

$$\Gamma[\phi] = \sum_{n=2}^{\infty} \frac{1}{n!} \int d^4 x_1 \dots d^4 x_n \Gamma^{(n)}(x_1, \dots, x_n) \phi(x_1) \dots \phi(x_n).$$

Take leading (n=2) term, take Fourier transform

$$\operatorname{Im}\left(\Gamma[\phi]\right) = \frac{1}{2} \int d^4 x_1 d^4 x_2 \phi(x_1) \phi(x_2) \int \frac{d^4 p}{(2\pi)^4} e^{ip(x_1 - x_2)} \operatorname{Im}(\tilde{\Gamma}^{(2)}(p^2))$$

Assume planar symmetry at collision, plug in Fourier transform of the classical field configuration to get particle number density:

$$\frac{N}{A} = 2 \int \frac{dp_z \, d\omega}{(2\pi)^2} \, |\tilde{\phi}(p_z,\omega)|^2 \, \mathrm{Im}[\tilde{\Gamma}^{(2)}(\omega^2 - p_z^2)]$$

Number of particles produced per unit area of bubble wall collision:

Each mode can be interpreted as **off-shell field quanta with given four-momentum** that can decay

Number of particles produced per unit area of bubble wall collision:

$$\frac{\mathcal{N}}{A} = \frac{1}{2 \pi^2} \int_0^\infty d\chi \, f(\chi) \operatorname{Im}\left(\tilde{\Gamma}^{(2)}(\chi)\right) \qquad \chi = \omega^2 - k^2$$

Semi-analytic solutions for idealized limits, Falkowski+No 1211.5615 [hep-ph]

$$\frac{\mathcal{N}}{A} = \frac{1}{2\pi^2} \int_0^\infty d\chi \, f(\chi) \, \mathrm{Im}\left(\tilde{\Gamma}^{(2)}(\chi)\right) \qquad \chi = \omega^2 - k^2$$

Semi-analytic solutions for idealized limits, Falkowski+No 1211.5615 [hep-ph]

MORE REALISTIC CASES, NUMERICALLY

Result: field configuration both before and after collision

MANSOUR, SHAKYA, 2308.13070

blue: false vacuum

REALISTIC CASES, NUMERICALLY

Different curves denote different shapes of the potential MANSOUR, SHAKYA, 2308.13070

Different curves denote different shapes of the potential MANSOUR, SHAKYA, 2308.13070

(Second peak: likely a numerical artifact)

0.1

RESULTS: EFFICIENCY FACTOR

MANSOUR, SHAKYA, 2308.13070

Simple fit functions:

$$f_{\text{elastic}}(p^2) = f_{\text{PE}}(p^2) + \frac{v_{\phi}^2 L_p^2}{15m_t^2} \exp\left(\frac{-(p^2 - m_t^2 + 12m_t/L_p)^2}{440\,m_t^2/L_p^2}\right) \qquad (\text{elastic collisions})$$
$$f_{\text{inelastic}}(p^2) = f_{\text{PE}}(p^2) + \frac{v_{\phi}^2 L_p^2}{4m_f^2} \exp\left(\frac{-(p^2 - m_t^2 + 31m_t/L_p)^2}{650\,m_t^2/L_p^2}\right) \qquad (\text{inelastic collisions})$$

Both cases well matched with the same power law

$$f_{\rm PE}(p^2) = \underbrace{\frac{16v_{\phi}^2}{p^4}}_{p^4} \operatorname{Log}\left[\frac{2(1/l_w)^2 - p^2 + 2(1/l_w)\sqrt{(1/l_w)^2 - p^2}}{p^2}\right]$$

Both elastic and inelastic collisions equally "efficient" at high energies

PARTICLE PHYSICS ASPECTS

$$\frac{N}{A} = 2 \int \frac{dp_z \, d\omega}{(2\pi)^2} \, |\tilde{\phi}(p_z,\omega)|^2 \operatorname{Im}[\tilde{\Gamma}^{(2)}(\omega^2 - p_z^2)]$$
$$\operatorname{Im}[\tilde{\Gamma}^{(2)}(\chi)] = \frac{1}{2} \sum_{\alpha} \int d\Pi_{\alpha} |\mathcal{M}(\phi \to \alpha)|^2 \,\Theta(\chi - \chi_{\min(\alpha)})$$

 α sums over all final particle states that can be produced.

 $|\mathcal{M}(\phi \rightarrow \alpha)|^2$ is the spin-averaged squared amplitude

PARTICLE PHYSICS ASPECTS

$$\operatorname{Im}[\tilde{\Gamma}^{(2)}(\chi)] = \frac{1}{2} \sum_{\alpha} \int d\Pi_{\alpha} |\mathcal{M}(\phi \to \alpha)|^2 \,\Theta(\chi - \chi_{\min(\alpha)}).$$

Scalar self-interaction $\frac{\lambda_{\phi}}{4!}\phi^4$

$$\operatorname{Im}[\tilde{\Gamma}^{(2)}(p^2)]_{\phi_p^* \to \phi\phi} = \frac{\lambda_{\phi}^2 v_{\phi}^2}{8\pi} (1 - 4m_{\phi}^2/p^2) \Theta(p - 2m_{\phi})$$
$$\operatorname{Im}[\tilde{\Gamma}^{(2)}(p^2)]_{\phi_p^* \to 3\phi} = \frac{\lambda_{\phi}^2 p^2}{3072 \pi^3} (1 - 9m_{\phi}^2/p^2) \Theta(p - 3m_{\phi})$$

Yukawa interaction with a fermion:

$$\operatorname{Im}[\tilde{\Gamma}^{(2)}(p^2)]_{\phi_p^* \to \chi_f \bar{\chi}_f} = \frac{y_f^2}{8\pi} p^2 (1 - 4m_{\chi_f}^2/p^2)^{3/2} \Theta(p^2 - 4m_{\chi_f}^2)$$

PARTICLE PHYSICS ASPECTS

$$\operatorname{Im}[\tilde{\Gamma}^{(2)}(\chi)] = \frac{1}{2} \sum_{\alpha} \int d\Pi_{\alpha} |\mathcal{M}(\phi \to \alpha)|^2 \,\Theta(\chi - \chi_{\min(\alpha)}).$$

Scalar self-interaction $\frac{\lambda_{\phi}}{4!}\phi^4$

$$\operatorname{Im}[\tilde{\Gamma}^{(2)}(p^{2})]_{\phi_{p}^{*}\to\phi\phi} = \frac{\lambda_{\phi}^{2} v_{\phi}^{2}}{8\pi} (1 - 4m_{\phi}^{2}/p^{2}) \Theta(p - 2m_{\phi})$$

$$\operatorname{Im}[\tilde{\Gamma}^{(2)}(p^2)]_{\phi_p^* \to 3\phi} = \frac{\lambda_{\phi}^2 p^2}{3072 \pi^3} (1 - 9m_{\phi}^2/p^2) \Theta(p - 3m_{\phi})$$

Yukawa interaction with a fermion:

$$\operatorname{Im}[\tilde{\Gamma}^{(2)}(p^2)]_{\phi_p^* \to \chi_f \bar{\chi}_f} = \frac{y_f^2}{8\pi} p^2 (1 - 4m_{\chi_f}^2/p^2)^{3/2} \Theta(p^2 - 4m_{\chi_f}^2)$$

Gauge boson?? $\operatorname{Im}[\tilde{\Gamma}^{(2)}(p^2)]_{\phi_p^* \to 2V} \sim ??$

GIUDICE, LEE, POMAROL, SHAKYA, 2403.03252

$$|\bar{\mathcal{M}}(\phi_p^* \to VV)|^2 = g^2 m_V^2 \left(3 - \frac{p^2}{m_V^2} + \frac{p^4}{4m_V^4}\right) \qquad (\text{Unitary gauge})$$

Blows up at large energies, becomes non-perturbative

GIUDICE, LEE, POMAROL, SHAKYA, 2403.03252

$$|\bar{\mathcal{M}}(\phi_p^* \to VV)|^2 = g^2 m_V^2 \left(3 - \frac{p^2}{m_V^2} + \frac{p^4}{4m_V^4}\right) \qquad \text{(Unitary gauge)}$$

Blows up at large energies, becomes non-perturbative

$$|\bar{\mathcal{M}}(\phi_p^* \to VV)|^2 = g^2 m_V^2 \left(3 - \frac{p^2}{m_V^2} + \frac{\lambda_\phi^2}{g^4}\right) \qquad \text{(Feynman-'t Hooft gauge)}$$

Becomes negative at large energies

GIUDICE, LEE, POMAROL, SHAKYA, 2403.03252

$$|\bar{\mathcal{M}}(\phi_p^* \to VV)|^2 = g^2 m_V^2 \left(3 - \frac{p^2}{m_V^2} + \frac{p^4}{4m_V^4}\right) \qquad \text{(Unitary gauge)}$$

Blows up at large energies, becomes non-perturbative

 $|\bar{\mathcal{M}}(\phi_p^* \to VV)|^2 = g^2 m_V^2 \left(3 - \frac{p^2}{m_V^2} + \frac{\lambda_\phi^2}{g^4}\right) \qquad \text{(Feynman-'t Hooft gauge)}$

Becomes negative at large energies

More generally,

$$|\bar{\mathcal{M}}(\phi_p^* \to VV)|^2 = g^2 m_V^2 \times \begin{cases} \frac{(\xi - 3)p^2}{2m_V^2} + \frac{\lambda_\phi^2}{g^4} + 3 & \text{for } \frac{p^2}{m_V^2} \gg \xi, 1\\ \frac{p^4}{4m_V^4} - \frac{p^2}{m_V^2} + 3 & \text{for } \xi \gg \frac{p^2}{m_V^2}, 1 \end{cases} \quad (R_\xi \text{ gauge})$$

Calculation is not gauge independent!

GIUDICE, LEE, POMAROL, SHAKYA, 2403.03252

The problem: sum over gauge boson polarizations

$$\sum \epsilon^{\mu} \epsilon^{\nu} \to -g^{\mu\nu} + (1-\xi) \frac{p^{\mu} p^{\nu}}{p^2 - \xi m_V^2}$$

Includes both physical and unphysical degrees of freedom.

GIUDICE, LEE, POMAROL, SHAKYA, 2403.03252

The problem: sum over gauge boson polarizations

$$\sum \epsilon^{\mu} \epsilon^{\nu} \to -g^{\mu\nu} + (1-\xi) \frac{p^{\mu} p^{\nu}}{p^2 - \xi m_V^2}$$

Includes both physical and unphysical degrees of freedom.

In any physical calculation, the unphysical contributions cancel out.

However, a collection of off-shell background field excitations is not a physical state, so gauge invariance is not guaranteed!

(The effective action formalism is known to suffer from gauge invariance issues in general)

GIUDICE, LEE, POMAROL, SHAKYA, 2403.03252

The problem: sum over gauge boson polarizations

$$\sum \epsilon^{\mu} \epsilon^{\nu} \to -g^{\mu\nu} + (1-\xi) \frac{p^{\mu} p^{\nu}}{p^2 - \xi m_V^2}$$

Includes both physical and unphysical degrees of freedom.

PRACTICAL SOLUTION:

Instead of doing the above sum, restrict explicitly to physical states, use Goldstone Equivalence Theorem to get high energy behavior of longitudinal modes

$$|\bar{\mathcal{M}}(\phi_p^* \to VV)|^2 \xrightarrow{p^2 > m_V^2} (2g^2 + \frac{\lambda_\phi^2}{g^2}) m_V^2 (1 + \mathcal{O}(m_V^2/p^2))$$

APPLICATION I: HEAVY DARK MATTER

GIUDICE, LEE, POMAROL, SHAKYA, 2403.03252

DARK MATTER: SETUP

Scalar DM χ_s , with mass m_{χ_s} and interaction $\frac{\lambda_s}{4}\phi^2\chi_s^2$

Produced via $\phi_p^* \to \chi_s^2, \ \phi \chi_s^2$

$$\Omega_{\chi}h^2 \approx 0.1 \,\frac{\beta/H}{10} \left(\frac{\alpha}{(1+\alpha)g_*c_V}\right)^{1/4} \frac{\lambda_s^2 \,m_{\chi_s} \,v_{\phi}}{(24 \text{ TeV})^2} \left[\frac{v_{\phi}^2}{m_{\chi_s}^2} + \frac{1}{16\pi^2} \ln\left(\frac{2\,\gamma_w/l_{w0}}{(2m_{\chi_s}+m_{\phi})}\right)\right]$$

DARK MATTER PRODUCTION

Scalar DM χ_s , with mass m_{χ_s} and interaction $\frac{\lambda_s}{4}\phi^2\chi_s^2$

Produced via $\phi_p^* \to \chi_s^2, \ \phi \chi_s^2$

Relative importance of various processes

DARK MATTER PRODUCTION WITH A THERMAL PLASMA

If dark sector particles are part of the thermal bath, additional production mechanisms exist:

FREEZE-IN: Direct annihilation of scalar particles in the bath into DM

WALL-PLASMA INTERACTIONS: Scalar particles interacting with the boosted bubble walls can upscatter into DM

A. Azatov, M. Vanvlasselaer, and W. Yin, arXiv:2101.05721 [hep-ph].

BUBBLETRON: Walls can boost scalar particles in the plasma to high energies, their collisions can efficiently produce DM

I. Baldes, M. Dichtl, Y. Gouttenoire, and F. Sala, arXiv:2306.15555 [hep-ph].

DARK MATTER PRODUCTION WITH A THERMAL PLASMA

If dark sector particles are part of the thermal bath, additional production mechanisms exist:

FREEZE-IN: Direct annihilation of scalar particles in the bath into DM

WALL-PLASMA INTERACTIONS: Scalar particles interacting with the boosted bubble walls can upscatter into DM

A. Azatov, M. Vanvlasselaer, and W. Yin, arXiv:2101.05721 [hep-ph].

BUBBLETRON: Walls can boost scalar particles in the plasma to high energies, their collisions can efficiently produce DM

I. Baldes, M. Dichtl, Y. Gouttenoire, and F. Sala, arXiv:2306.15555 [hep-ph].

SCALAR DARK MATTER PARAMETER SPACE

GIUDICE, LEE, POMAROL, SHAKYA, 2403.03252

Contours:

Size of coupling needed to produce the correct dark matter relic density

FERMION DARK MATTER

GIUDICE, LEE, POMAROL, SHAKYA, 2403.03252

Fermion DM χ_f , with mass m_{χ_f} and effective interaction $y_f \phi \chi_f \bar{\chi}_f$

Contours:

Size of coupling needed to produce the correct dark matter relic density

PHENOMENOLOGY

Gravitational waves:

Experiment	$f_{optimal}/\mathbf{Hz}$	$v_{\phi}/{ m GeV}$	$m_{\rm DM}/{ m GeV}$
Pulsar Timing Arrays (PTAs) [107]	10^{-8}	0.1	$10^{13} - 10^{16}$
LISA [108]	0.001	10^{4}	$10^6 - 10^{15}$
BBO [109], DECIGO [110]	0.1	10^{6}	$10^5 - 10^{13}$
Einstein Telescope (ET) [111], Cosmic Explorer (CE) [112]	10	10^{8}	$10^6 - 10^{10}$

PHENOMENOLOGY

Gravitational waves:

Experiment	$f_{optimal}/\mathbf{Hz}$	$v_{\phi}/{ m GeV}$	$m_{\rm DM}/{ m GeV}$
Pulsar Timing Arrays (PTAs) [107]	10^{-8}	0.1	$10^{13} - 10^{16}$
LISA [108]	0.001	10^{4}	$10^6 - 10^{15}$
BBO [109], DECIGO [110]	0.1	10^{6}	$10^5 - 10^{13}$
Einstein Telescope (ET) [111], Cosmic Explorer (CE) [112]	10	10^{8}	$10^6 - 10^{10}$

Suppressed matter power spectrum:

Bubble collisions produce **DM with large boosts** -> **long free-streaming lengths**. **suppressed matter power spectrum** that could provide measurable effects for future cosmological observations?

PHENOMENOLOGY

Gravitational waves:

Experiment	$f_{optimal}/\mathbf{Hz}$	v_{ϕ}/GeV	$m_{\rm DM}/{ m GeV}$
Pulsar Timing Arrays (PTAs) [107]	10^{-8}	0.1	$10^{13} - 10^{16}$
LISA [108]	0.001	10^{4}	$10^6 - 10^{15}$
BBO [109], DECIGO [110]	0.1	10^{6}	$10^5 - 10^{13}$
Einstein Telescope (ET) [111], Cosmic Explorer (CE) [112]	10	10^{8}	$10^6 - 10^{10}$

Suppressed matter power spectrum:

Bubble collisions produce **DM with large boosts** -> **long free-streaming lengths**. **suppressed matter power spectrum** that could provide measurable effects for future cosmological observations?

Gravitational interactions:

Possible to produce **ultraheavy DM** close to the Planck scale; for such massive particles, **individual gravitational interactions might be detectable** (e.g. Windchime project)

APPLICATION II: MATTER-ANTIMATTER ASYMMETRY

CATALDI, SHAKYA, 2406.XXXXX

FUTURE DIRECTIONS

- Can such particle production affect GW signals from bubble collisions? (work in progress w/ Keisuke Inomata, Marc Kamionkowski, Kentaro Kasai)
- Study cosmological/ astrophysical properties of dark matter produced from bubble collisions
 - Improved numerical studies of the collision process
 - How to make the formalism gauge invariant?
 - Applications to BSM setups (probe GUT physics?)

. . .

SUMMARY

ULTRA-HIGH-ENERGY PARTICLES FROM VACUUM DECAY

- First order vacuum decay with runaway bubbles can produce the most energetic configuration to ever exist in our cosmic history, within a few orders of magnitude of the Planck scale
- Collisions of such bubbles leads to **particle production with ultrahigh mass, energy:** an unavoidable phenomenon.
- Recent work: **Improved conceptual understanding and numerical results**, which show that such ultrahigh processes are only power law suppressed.
- Possible to produce **ultraheavy dark matter** up to 10¹⁶ GeV from phase transitions at scales as low as sub-GeV
- **Leptogenesis** with heavy right-handed neutrinos $M_N \sim 10^{14} \text{ GeV}$

THANK YOU FOR YOUR ATTENTION!