for coherent state  $|\langle \alpha | \beta \rangle|^2 = -|\alpha - \beta|^2$ recoll!  $|X\rangle = P(x)|0\rangle = e^{\frac{1}{2}|x|^2} \sum_{m} \int_{m}^{m} |m\rangle$ (1m) mumber states)  $P_{\eta} = 0 = h_{\eta} = 0 > 0$   $= |\chi|^{2}$   $= |\chi|^{2}$ 

\_> Zero-particle event \_> computing Coursion fenctions -> Scealor product Lo mix 2 Coursian States with a bean splitter (d) d (s) con he mixed with 50:50 been splitter to movide yet onether coherent States (X) & IRS

$$\beta'$$
 -  $\sqrt{2}$   $(d+\beta)$ 

measure 
$$P_{1}m=0$$
 on  $[d]$ 
 $P_{1}m=0$   $= [d]^{2}$ 
 $= \frac{1}{2}[d-\beta]^{2}$ 





- photon couting with Cherent Loser beams -> computes the scalar Moduct Cram matrix -> loop over the datuset