

Entangled photons in the Earth's gravitational field

Philip Walther (University of Vienna & UniVie-ÖAW Research Network TURIS)

Fundamental experiments with single photons

- Quantum Causality
- Quantum-Gravity Interface
- Probing Special Relativity with Entanglement

Preparation of superimposed causal oders: the quantum switch

 $|1\rangle|\psi\rangle$ U_1 U_2

 $|0\rangle|\psi\rangle \rightarrow |0\rangle U_2 U_1|\psi\rangle$ Gate U_1 acts before U_2 $|1\rangle|\psi\rangle \rightarrow |1\rangle U_1 U_2|\psi\rangle$ Gate U_2 acts before U_1

Chiribella et al, Phys. Rev. A 88, 022318 (2013)

Preparation of superimposed causal oders: the quantum switch

Gate U_1 acts before U_2 and U_2 acts before U_1

Chiribella et al, Phys. Rev. A 88, 022318 (2013)

What is it good for?

Given **U**₁ and **U**₂, the task is to distinguish whether they <u>commute or anti-commute</u>.

Causal orders for quantum computers

standard quantum algorithm

Fixed order of quantum computer gates

The actual setup

Surpassing regular QC

average success rate:

 $\textbf{0.976} \pm \textbf{0015}$

Rubino, Rozema, Feix, Araújo, Zeuner, Procopio, Brukner, Walther Science Advances 3, e1602589 (2017)

Procopio, Moqanaki, Araujo, Costa, Calafell, Dowd, Hamel,Rozema, Brukner, Walther Nature Communication 6, 8913 (2015)

Experimental Indefinte Causal Order

RESEARCH ARTICLE QUANTUM INFORMATION

Experimental verification of an indefinite causal order

Giulia Rubino^{1,*}, Lee A. Rozema¹, ^(D) Adrien Feix^{1,2}, Mateus Araújo^{1,2}, ^(D) Jonas M. Zeuner¹, Lorenzo M. Procopio¹, Časlav B...

Science Advances 24 Mar 2017: Vol. 3, no. 3, e1602589 DOI: 10.1126/sciadv.1602589

()uantum

PAPERS PERSPECTIVES

Experimental entanglement of temporal order

Giulia Rubino^{1,2}, Lee A. Rozema¹, Francesco Massa¹, Mateus Araújo^{1,3}, Magdalena Zych⁴, Časlav Brukner^{1,3}, and Philip Walther¹

Demonstration of universal time-reversal for qubit processes

P. Schiansky,^{1,3,†} ⁽⁰⁾ T. Strömberg,^{1,†} D. Trillo,² V. Saggio,¹ B. Dive,² M. Navascués,² and P. Walther^{1,4} ⁽⁰⁾

Experimental aspects of indefinite causal order in quantum mechanics L. A. Rozema, T. Strömberg, H. Cao, B.H. Liu, PW, Nature Review Physics 6, 483 (2024)

Experiments at the interface of quantum physics and gravity

TURIS' big open question:

How does gravity act on quantum systems ?

more specifically:

How does gravity act on massless quantum systems,

including quantum entanglement?

The four «classical» tests of General Relativity

1) Mercury perihelion precession

1859 (Urbain Le Verrier) & 1882 (Simon Newcombe): anomalous precession of the perihelion of Mercury orbital plane

A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations made at the Total Eclipse of May 29, 1919.

By Sir F. W. DYSON, F.R.S., Astronomer Royal, Prof. A. S. Eddington, F.R.S., and Mr. C. Davidson.

Philosophical Transactions of the Royal Society. 220A (571–581): 291–333.

2) Light bending

1919 (Sir Arthur Eddington), Brazil & South Africa: total solar eclipse to confirm doubling of the deflection angles (1,75" VS 0,87")

2009 (Fomalont et al.): gravitational lensing observerd via strong radio signals from astrophysical sources (i.e. quasars).

 $\gamma=0,9998\pm0,0003$, $(\gamma_{\textit{GR}}=1)$

The four «classical» tests of General Relativity

3) Gravitational redshift

GRAVITATIONAL RED-SHIFT IN NUCLEAR RESONANCE R. V. Pound and G. A. Rebka, Jr. Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts Detector (absorber)

(Received October 15, 1959)

PHYSICAL REVIEW LETTER

1959 (Pound and Rebka) & 1964 (Pound and Snider): relative frequency shift of light emitted-absorbed at different heigh

1972 (Hafele and Keating): four Cs-atomic clocks on plane show time dilation with 9% accuracy

2022 (Jun Ye group):

Sr atoms enable to detect gravitational-redshift at millimeter scale (clock uncertainty 7.6×10^{-21})^{source (emitter)}

gh

 c^2

VOLUME 3, NUMBER

4) Shapiro Delay

1967 *(Irwin Shapiro):* radio signals of roundtrip Earth-Venus show time delay of 200 μs

The first quantum test of gravity

Matter-wave interferometry using neutrons (the «famous» COW-experiment)

TURIS

VOLUME 34, NUMBER 23 PH

PHYSICAL REVIEW LETTERS

9 June 1975

Observation of Gravitationally Induced Quantum Interference*

R. Colella and A. W. Overhauser Department of Physics, Purdue University, West Lafayette, Indiana 47907

and

S. A. Werner Scientific Research Staff, Ford Motor Company, Dearborn, Michigan 48121 (Received 14 April 1975)

We have used a neutron interferometer to observe the quantum-mechanical phase shift of neutrons caused by their interaction with Earth's gravitational field.

Schematic diagram of the neutron interferometer and ³He detectors used in this experiment.

Experiments at the gravity-quantum interface

Quantum optomechanics....

Nature 464, 697-703 (2010)

Quantum ground state and single-phonon control of a mechanical resonator

A. D. O'Connell¹, M. Hofheinz¹, M. Ansmann¹, Radoslaw C. Bialczak¹, M. Lenander¹, Erik Lucero¹, M. Neeley¹, D. Sank¹, H. Wang¹, M. Weides¹, J. Wenner¹, John M. Martinis¹ & A. N. Cleland¹

Nature 475, 359-363 (2011)

Sideband cooling of micromechanical motion to the quantum ground state

J. D. Teufel¹, T. Donner^{2,3}, Dale Li¹, J. W. Harlow^{2,3}, M. S. Allman^{1,3}, K. Cicak¹, A. J. Sirois^{1,3}, J. D. Whittaker^{1,3}, K. W. Lehnert^{2,3} & R. W. Simmonde¹

Nature 478, 89-92 (2011)

Laser cooling of a nanomechanical oscillator into its quantum ground state

Jasper Chan¹, T. P. Mayer Alegre¹[†], Amir H. Safavi-Naeini¹, Jeff T. Hill¹, Alex Krause¹, Simon Gröblacher^{1,2}, Markus Aspelmeye & Oskar Painter¹

Measurement of gravitational coupling between millimetre-sized masses

obias Westphal 🖾, Hans Hepach, Jeremias Pfaff & Markus Aspelmeyer 🖾

Nature 591, 225–228 (2021) Cite this article

...Quantum matter waves

Experiments at the gravity-quantum interface

How does gravity act on massless quantum systems, including quantum entanglement?

Classical
physicsQuantum
mechanicsNewtonian gravity $17^{th} - 19^{th}$ centuryNeutrons (COW)
Atoms/BECGeneral relativityClassical test of GR
Time dilation with clocksPhotonic
quantum
systems

And what was done so far?

Cite as: P. Xu et al., Science 10.1126/science.aay5820 (2019)

Satellite-based missions

IOP PUBLISHING

Class. Quantum Grav. 29 (2012) 224011 (44pp)

CLASSICAL AND QUANTUM GRAVITY doi:10.1088/0264-9381/29/22/224011

Experimental concepts with single photons

Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities

David Rideout^{1,2,3}, Thomas Jennewein^{2,4}, Giovanni Amelino-Camelia⁶, Tommaso F Demarie⁷, Brendon L Higgins^{2,4}, Achim Kempf^{2,3,4,5}, Adrian Kent^{3,8}, Raymond Laflamme^{2,3,4}, Xian Ma^{2,4}, Robert B Mann^{2,4}, Eduardo Martín-Martínez^{2,4,5}, Nicolas C Menicucci^{3,9}, John Moffat³, Christoph Simon¹⁰, Rafael Sorkin³, Lee Smolin³ and Daniel R Terno⁷

Satellite testing of a gravitationally induced quantum decoherence model

Science

Ping Xu^{1,3*}, Yiqiu Ma^{1*}, Ji-Gang Ren^{1,3*}, Hai-Lin Yong^{1,3}, Timothy C. Ralph⁴, Sheng-Kai Liao^{1,3}, Juan Yin^{1,3}, Wei-Yue Liu^{1,3}, Wen-Qi Cal^{1,4}, Xuan Han^{1,3}, Hui-Nan Wu^{1,3}, Wei-Yang Wang^{1,3}, Feng-Zhi Li^{1,3}, Meng Yang^{1,3}, Feng-Li Lin⁵, Li Li^{1,3}, Nai-Le Liu^{1,3}, Yu-Ao Chen^{1,3}, Chao-Yang Lu^{1,3}, Yanbei Chen³, Jingyun Fan^{1,2+}, Cheng-Zhi Peng^{1,3+}, Jian-Wei Pan^{1,2+}

PHYSICAL REVIEW LETTERS 133, 020201 (2024)

Single-Photon Interference over 8.4 km Urban Atmosphere: Toward Testing Quantum Effects in Curved Spacetime with Photons

Hui-Nan Wu^o, ^{*}Yu-Huai Li^o, ^{*}Bo Li^o, Xiang You, Run-Ze Liu^o, Ji-Gang Ren, Juan Yin, Chao-Yang Lu, Yuan Cao^o, Cheng-Zhi Peng^o, and Jian-Wei Pan

Table-top experiments

CLASSICAL AND QUANTUM GRAVITY doi:10.1088/0264-9381/29/22/224010

General relativistic effects in quantum interference of photons

Magdalena Zych 1, Fabio Costa 1, Igor Pikovski 1, Timothy C Ralph 2 and Časlav Brukner 1,3

Clocks at different heights in a gravit. field

TIIRIS **Interferometic phase-shift due to hight difference** $\Delta \varphi_g \simeq 10^{-6} \text{ rad}$ $\Delta f/f = \mathbf{10^{-16}}$ $L = 40 \ km$ g Gia Nergis LMU Dvali Mavalvala $\Delta h = 2m$ erc Philip Piotr universität wien Walther Crusciel

Gravitationally induced phase shift on a single photon Hilweg, Massa, Martynov, Mavalavala, Walther, New J. Phys. 19, 033028 (2017) Measuring space-time curvature using maximally path-entangled quantum states Mieling, Hilweg, Walther, Physical Review A 106, L031701 (2022)

universität Wien

Interferometic phase-shift due to height difference TURIS

universität Wien

Passive noise stabilization in the city of Vienna

new precision lab – decoupled ground floor

Vibration insensitive spool

Differential measurements

Differential measurements

From superposition to quantum entanglement

Tutorial: Boson behaviour of photons

Hong-Ou-Mandel effect

Gravity effects on quantum entanglement

Path-entangled photon pairs

- Mach-Zehnder setup
- *N*-input particles (photons) are propagating either along mode a *or* b
- $|N_a|0_b$ or $|0|N_b$ which is called N00N-state
- Oscillation of interference fringes is proportional to *N*

1st generation experiments: measurement of Earth's rotation using entanglement

Optical gyroscope – Sagnac interferometry

(Greek: gyros - rotation, skopeein - to observe)

Sagnac interferometry

universität wien

Optical Sagnac effect – single photons

Optical Sagnac effect – two photons NOON state

Optical Sagnac effect – two photons NOON state

New Journal of Physics Volume 21, May 2019 Entanglement-enhanced optical gyroscope

M. Fink, F. Steinlechner, J. Handsteiner, J. P. Dowling, T. Scheidl and R. Ursin

universität wien

URIS

Experimental scheme – fiber loop frame

Experimental Scale factor calibration

1-photon vs entangled 2-photon fringes

Quantum entanglement probing earth rotation

universität Wien

Outlook – probing curved space time...?

PHYSICAL REVIEW RESEARCH

Frame dragging and the Hong-Ou-Mandel dip: Gravitational effects in multiphoton interference $4\omega A = 4\omega A (2GM)$

Anthony J. Brady and Stav Haldar Phys. Rev. Research **3**, 023024 – Published 8 April 2021

Summary – Photonic Quantum Interferometry

Experimental Indefinite Causal Order

Photonic quantum switch for foundations and applications

Measurement of Earth rotation (non-inertial reference frame)

Sagnac phase-shift using single-photons and two-photon NOON states

Measurement of general relativistic effects

Gravitationally-induced phase shift acting on entangled photons

Team Photonic Gravity Quantum Experiments

