Cosmological Correlators

Guilherme L. Pimentel

Cosmological Correlators

Guilherme L. Pimentel

What is the origin of structure in the universe?

Cosmological Correlators

All of the information about the <u>origin of structure</u> and the dynamics of the early universe is encoded in cosmological correlations!

I will show that the early universe is a collider experiment run at enormous energies.

Cosmological correlators are the scattering amplitudes of this experiment.

Inference

Primordial Fluctuations

Superhorizon Fluctuations

How did fluctuations become correlated of over superhorizon distances?

Planck Collaboration

Inflation

Time without Time

Inflaton?

Inflationary Microscopy

Inflation as a Collider

Inflation is most energetic event in nature, perhaps (LHC x billions)!

The early universe acts as a particle accelerator!

What collides? How?

What — large two-point functions!

How — Higher-point functions!

The dynamics is encoded in those correlations.

Cosmological Correlators

Scattering amplitudes in the sky!

How big is the signal?

We need <u>precise measurements</u> & <u>precise theoretical predictions!</u>

Take Away

Fossils from the early universe can be used as a unique particle detector.

These particles produce cosmological correlators which <u>encode</u> the dynamics of the early universe.

Interlude

Entanglement

Neither thermal, nor like flat space vacuum. I don't know how to probe it experimentally...

What are all the possible correlators?

Structure of Correlator

Inferring which particles are created will tell us about the microphysics of inflation.

Particles as Tracers

The particle propagates in the inflationary background, tracing and imprinting it in the correlator, as we change the shape in the sky.

Easy to Calculate?

No! We need new tools to do it.

$$\int dt \, dt' \, e^{i(k_1+k_2)t} e^{i(k_3+k_4)t'} \, G(|k_1+k_2|,t,t')$$

External Mode Functions

Lots of special (Hankel) functions

Bootstrap

Bootstrap

- Scattering amplitudes,
- Conformal field theories,
- Cosmological correlators?

The S-matrix Bootstrap

Weakly coupled four-particle amplitude:

$$A(s,t) = \sum a_{nm} s^n t^m + \frac{g^2}{s - M^2} P_S \left(1 + \frac{2t}{M^2} \right)$$

contact interactions

exchange interactions

No Lagrangian or Feynman diagrams.

Basic principles (symmetry, locality, unitarity)

allow only a small menu of possibilities.

Time without Time

Cosmological Collider Physics

Equilateral (EFT)

Cosmological Collider Physics

Particle Production

In the collapsed limit, dependence in <u>spatial</u> momenta is the same as <u>time evolution</u> of a harmonic oscillator

$$\left[\frac{d^2}{dt^2} + M^2\right] f = \frac{1}{2\cosh(\frac{1}{2}t)} \qquad e^t \equiv \frac{u}{v}$$

$$f \equiv (uv)^{-1/2}F$$

Concrete Answer

$$(uv)^{\frac{1}{2} \pm iM} {}_{2}F_{1} \begin{bmatrix} \frac{1}{4} \pm iM, \frac{3}{4} \pm iM \\ 1 \pm iM \end{bmatrix} u^{2} _{2}F_{1} \begin{bmatrix} \frac{1}{4} \pm iM, \frac{3}{4} \pm iM \\ 1 \pm iM \end{bmatrix} v^{2} _{2}$$

particle production

$$F = \sum_{m,n} c_{mn}(M) u^{2m+1} \left(\frac{u}{v}\right)^n + \frac{\pi}{\cosh(\pi M)} g(u,v)$$

EFT

$$F_{2|0|1}^{2|1|3} \left[\begin{array}{c|c} \frac{1}{2}, 1 \\ \frac{5+2iM}{4}, \frac{5-2iM}{4} \end{array} \right] \left[\begin{array}{c|c} 1 \\ - \end{array} \right] \left[\begin{array}{c|c} \frac{5+2iM}{4}, \frac{5-2iM}{4}, \frac{1}{2}+iM \\ \frac{3}{2}+iM \end{array} \right] \left[\begin{array}{c|c} u^2, \frac{u^2}{v^2} \end{array} \right]$$

General Result

$$F_{M,S,g} = g^2 \mathcal{S}^{(S)} F_{M,0}$$

Parametrized by mass, spin, & coupling.

Take Away

Small menu of cosmological correlators! Amazingly, highly constrained by <u>locality</u>, <u>unitarity</u> and <u>symmetry</u>.

The shapes are computed using new methods!

This will have profound implications for understanding fundamental physics and the universe at the earliest times.

Emergent Time

Time without Time

Hypothesis

Cosmology & Holography

In quantum gravity, boundary observables are well-defined.

Cosmology & Scattering

The S-matrix is <u>contained</u> in the analytic structure of Cosmological Correlators!

$$\mathrm{d}\psi \ = \ \varepsilon \left[(\psi - F) \ \bullet \times \bullet \ + \ F \ \bullet \times \bullet \ + \ (\psi - \tilde{F}) \ \bullet \times \bullet \ + \ \tilde{F} \ \bullet \times \bullet \right]$$

$$\mathrm{d}F = \varepsilon \left[F - \times + (F - Z) - \times + Z - \times \right]$$

$$\mathrm{d}\tilde{F} \; = \; \varepsilon \left[\tilde{F} \, \begin{array}{c} \longleftarrow \\ \longleftarrow \end{array} \right. \; + \; \left(\tilde{F} - Z \right) \, \begin{array}{c} \longleftarrow \\ \longleftarrow \end{array} \right. \; + \; Z \, \begin{array}{c} \longleftarrow \\ \longleftarrow \end{array} \right]$$

$$dZ = 2\varepsilon Z - \bullet \bullet$$

$$\bullet * \bullet \equiv \operatorname{d} \log(X_1 + Y), \qquad \bullet * \bullet \equiv \operatorname{d} \log(X_1 - Y),$$

$$\bullet * \bullet \equiv \operatorname{d} \log(X_2 + Y), \qquad \bullet * \bullet \equiv \operatorname{d} \log(X_2 - Y),$$

$$\bullet * \bullet \equiv \operatorname{d} \log(X_1 + X_2).$$

Future

Observational Landscape

Targets

Probe	Modes
CMB	106
LSS	108
21 cm, ground	109
21 cm, moon	1012

Microscopics

A detailed theoretical understanding of microscopic dynamics constrains possible observations

Cosmological correlators probe <u>particle collisions</u> in the sky at ultra high energies!

Bootstrap gives <u>new perspective</u> on cosmological correlators.

Time evolution is encoded in spatial patterns.

Differential equations <u>decode</u> these patterns.

We might be seeing glimpses of a <u>timeless</u> description of cosmology.