


“The quantum jumps
replace the initial conditions
of the old mechanistic view”




Main actor (so far): The CMB
Fossil from an epoch when the
the cosmos was young and hot

(unlike today)

Coherent phases and
(large-angle) cross-correlations
suggest a primordial nature
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IR clues to a UV puzzle

The very-early universe
resembles a ‘fixed-energy’

experiment
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What have we learned about the relevant
scales from the CMB
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Running spectral index dns/dlnk
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What have we learned about the relevant

scales from the CMB
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What have we learned about the relevant
scales from the CMB
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We have not yet ‘detected’ any other
scale(s) related to interactions
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We have not yet detected B-
modes either
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Tensor Modes
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We have not yet detected
modes either

Tensor Modes
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low-energy’
may be as high
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Baumann
Green
RAP

B-modes and the Nature of Inflation

It may also constraint the
UV scales (indirectly) through the
'sound speed’
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UV completion
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scale of observations
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This picture invites us
[0 construct a
bottom-up approach A
to explore where the
‘new physics’ is hiding!

Effective Field Theory (EFT)
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Class I: ‘Slow-roll’ Inflation
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Class IlI: ‘Non-slow-roll’ Inflation
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Cheung et al.

The EFT approach
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The

—F1 approach
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Baumann

Green Where are we now?
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The nature of the primordial seed
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The shape of Non-Gaussianity
as a ‘particle detector’
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auger Excited states

Green
RAP

Physics near threshold:
The Cosmological Collider
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CAN WE TELL THEM APART?
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Uncertainty principle

Quantum
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Scattering in-in correlator Earlier times are

exponentially suppressed!
There is a manifestation of a more direct connection between
polology (‘residues’) in flat space and correlators in cosmology!

The 1/kt pole can change if 1) we have particles in the initial state (classical),
or 2) break of time translations (resonant NG)



Nacir Dissipative effects in Inflation
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https://arxiv.org/abs/2001.09149

Quantum (Vaccum) (Semi-)Classical

ARE THESE GENERIC FEATURES?


https://arxiv.org/abs/2001.09149
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Quantum (Semi-)Classical
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(Olawaf |0) = 6(k — k'), (0]l ax[0) =0, (af awr)e = 55(1( —K) = (awal)e,
Vacuum fluctuations Classical fluctuations
are observed ‘later’ are ‘real’

(energy injected through expansion)
Classical modes are sines/cosines

with ‘unknown’ amplitude from
a prob. distribution.
energy We can easily reproduce 2pt.

Quantum modes
carry positive/negative
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Green Signa\s of a Quantum Universe Dyamall
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. . These are all allowed by the S-matrix!
\I/ Y A /N The only difference
is the overlap with the state
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Quantum (Semi-)Classical
(C(x1,7)C(x2, 7)((x3, 7)) g — (C(x1,7)C(%x2, T)C(X3,7T))c =
N\ [T . .

+= [ drddat ()G, 7), CK, TG k2, 7, G, T (s, )C(x )],
vanish;)utside non-zero
of the light cone in QM!

The correlations are created inside the horizon
In the intersection of the past light-cones — can’t be changed later!
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Non-Local (Semi-)Classical

Hidden variables?

Gt (r -5 0,7') = %e_i’"’ ,

Flips the the signs by decaying to
‘anti-particles’ leading to kt pole
(only positive modes)

This theory is non-local!
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Non-Local (Semi-)Classical

Hidden variables?

1
Gt (r -5 0,7') = Ee_”'" ,

Flips the the signs by decaying to
‘anti-particles’ leading to same kt pole
(only positive modes)

This theory is non-local!

Gﬁff('r’ —0) ~ k1
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(Semi-)Classical

Can make causal with no anti-particles
but lack long-range!

Giff,causal(T N O, 7_/) _ Tlak25 ,

This needs a UV completion!
(“slowly moving”)
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Lorentz invariance requires they come together

If a function f(¢) can be Fourier decomposed

into positive frequencies only, ie. if it can be
written
w .
(1) = [ e7F(w)do, (4)
0

then f cannot be zero for any finite range of ¢,
unless trivially it is zero everywhere. The vahdity
of this theorem depends on F(w) satisfying certain
properties, the details of which I would prefer to
avoid.

THE REASON
FOR ANTIPARTICLES

Richard P. Feynman

You may be a bit surprised at this theorem
because you know you can take a function which is
zero over a finite range and Fourier analyze it, but

then you get positive and negative frequencies. 1
am insisting that the frequencies be positive only.

Relativistic dynamics must allow
for all processes (crossing!)
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Structure in the Universe is widely believed to have originated from quantum fluctuations during
an early epoch of accelerated expansion. Yet, the patterns we observe today do not distinguish
between quantum or classical primordial fluctuations; current cosmological data is consistent with
either possibility. We argue here that a detection of primordial non-Gaussianity can resolve the
present situation, and provide a litmus-test for the quantum origin of cosmic structure. Unlike in
quantum mechanics, vacuum fluctuations cannot arise in classical theories and therefore long-range
classical correlations must result from (real) particles in the initial state. Similarly to flat-space
scattering processes, we show how basic principles require these particles to manifest themselves
as poles in the n-point functions, in the so-called folded configurations. Following this observation,
and assumlng fluctuations are (2 relatedoverlarge scales, andzz geneated by local eolutlon

llnﬁatlon’ar ph hase _we dem'ontt‘tht theabsence of a pole ; in theolde lzmzt

non G’ausszan correlatorsumuel 7 zdentz 1es the uantumvaeuum as the zmtzal state In the same

spirit as Bell’s inequalities, we discuss how this can be circumvented if locality is abandoned. We
also briefly discuss the implications for simulations of a non-Gaussian universe.



A theoretical threshold must be
an observational target!!
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he primordial seed is Iin the distribution of galaxies!

The Lagrangian-space Effective Field
Theory of large scale structures

Rafael A. Porto,” Leonardo Senatore“’¢ and Matias Zaldarriaga®
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The Effective Field Theory of Large Scale Structure
at Three Loops

Thomas Konstandin,! Rafael A. Porto? and Henrique Rubira!?
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PROCEED
WITH CAUTION

Particle
Physics
Analogy

The situation ‘resembles’
pre-Large Hadron Collider
(many possible UV completions
for cold and/or warm inflation?)
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Historical lesson
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A PHENOMENOLOGICAL PROFILE OF THE HIGGS BOSON
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CERN, Geneva
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We should perhaps finish with an apology and a caution. We apologize to ex-
perimentalists for having no idea what is the mass ot the Higgs boson, unlike the
case with charm [3,4] and for not being sure of its couplings to other particles, except
. that they are probably all very small, For these reasons we do not want to encourage

: big experimental searches for the Higgs boson, but we do feel that people performing :
: : experiments vulnerable to the Higgs boson should know how it may turn up.
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We should perhaps finish with an apology and a caution. We apologize to ex-
perimentalists for having no idea what is the mass of the Higgs boson, unlike the
case with charm [3,4] and for not being sure of its couplings to other particles, except
.that they are probably all very small. For these reasons we do not want to encourage |

: big experimental searches for the Higgs boson, but we do feel that people performing :
cxpenments vulnerable to the Higgs boson should know how it may turn up.

Replace ‘the Higgs boson’ by ‘NG initial conditions’
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