

A MODEL WITH Cosmological Bell Inequalities

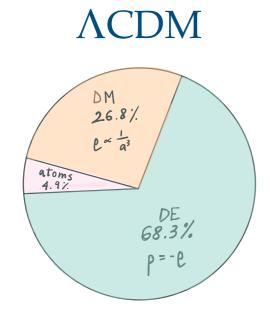
Margherita Putti & Stefano Lanza

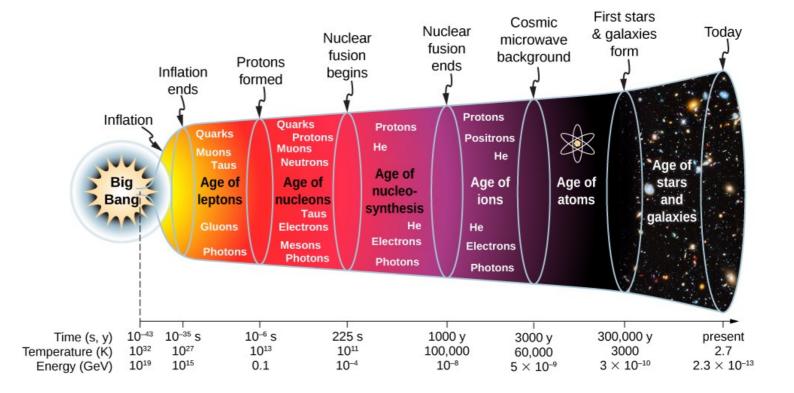
Based on: arXiv:1508.01082

Gravity & Entanglement Workshop ~ Hamburg, October 9

INTRODUCTION: INFLATION AND BELL EXPERIMENTS

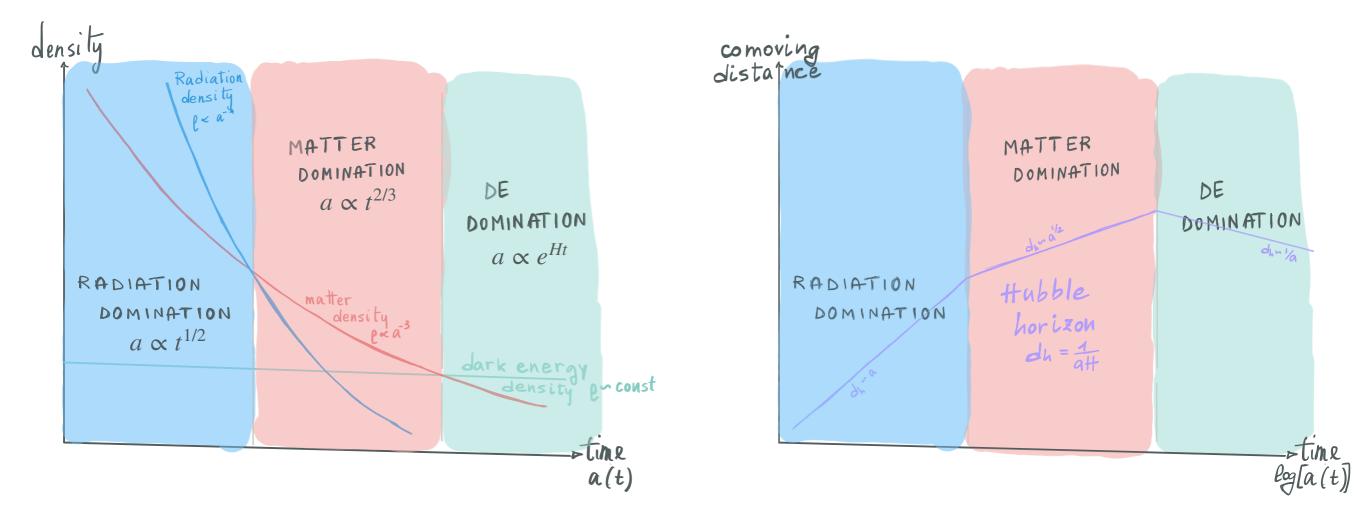
THE OBSERVABLE UNIVERSE





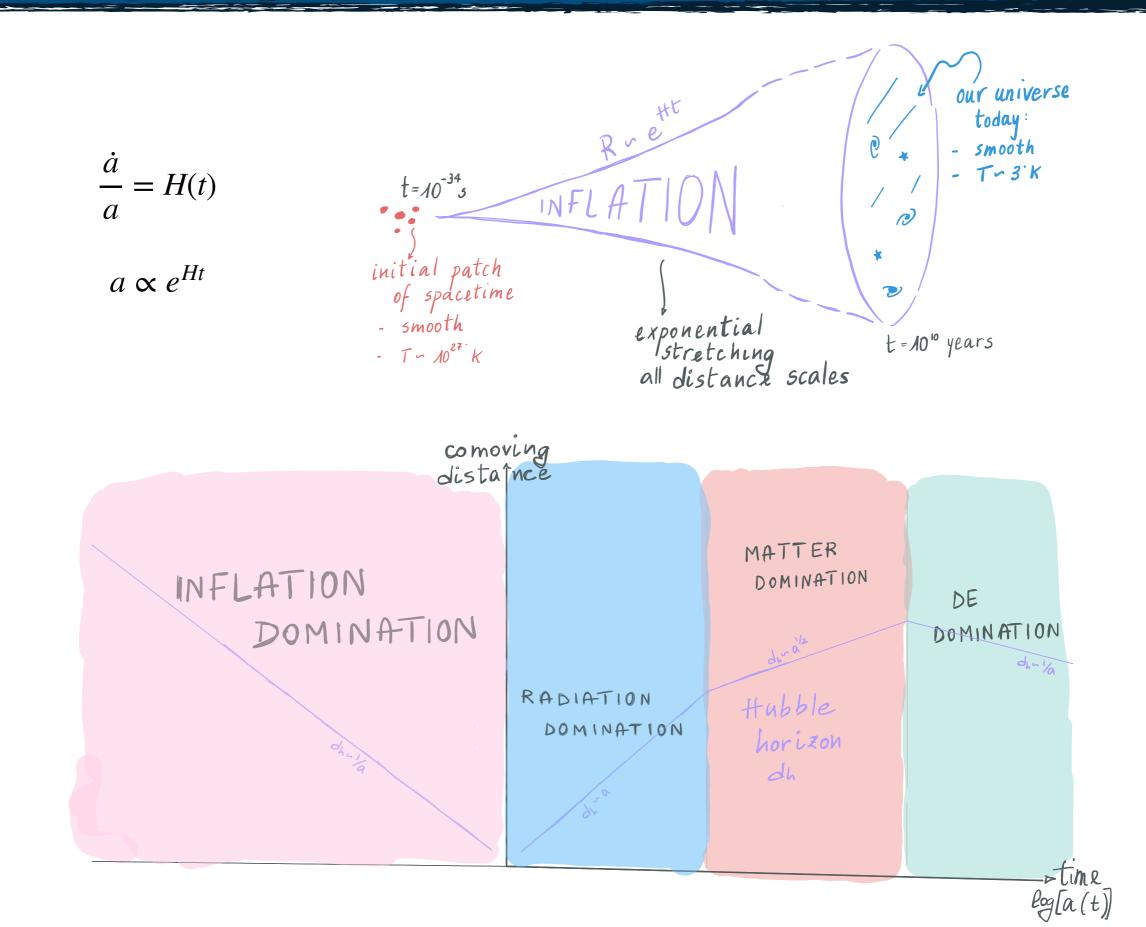
Big Bang Cosmology

The observable universe - Horizon

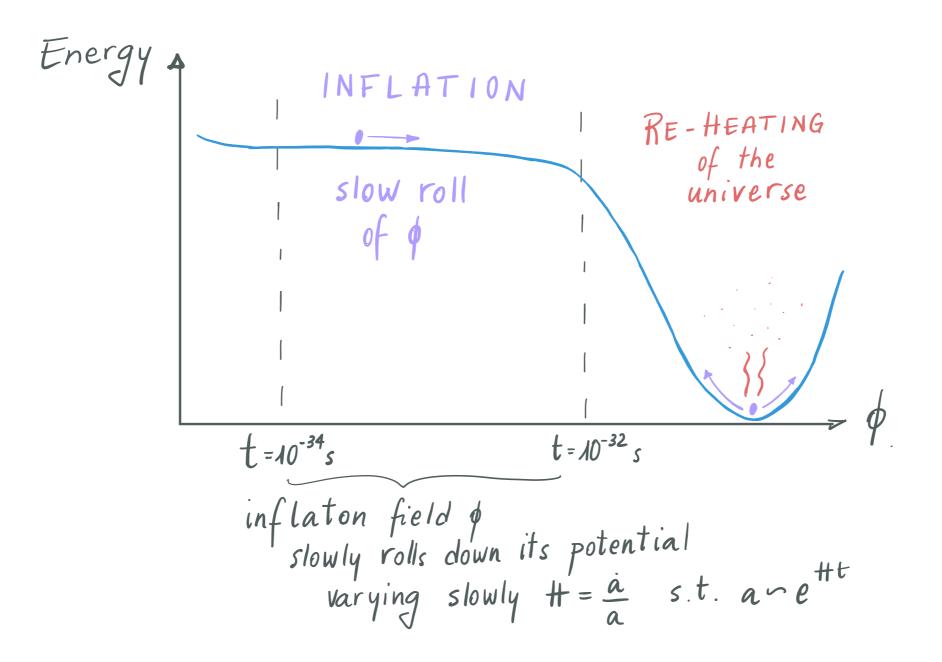


$$ds^{2} = dt^{2} + a(t)^{2} d\vec{x}^{2} = a(\eta)^{2} (-d\eta^{2} + d\vec{x}^{2})$$
$$d_{h} = \frac{1}{aH} \qquad \qquad \frac{\dot{a}}{a} = H(t)$$

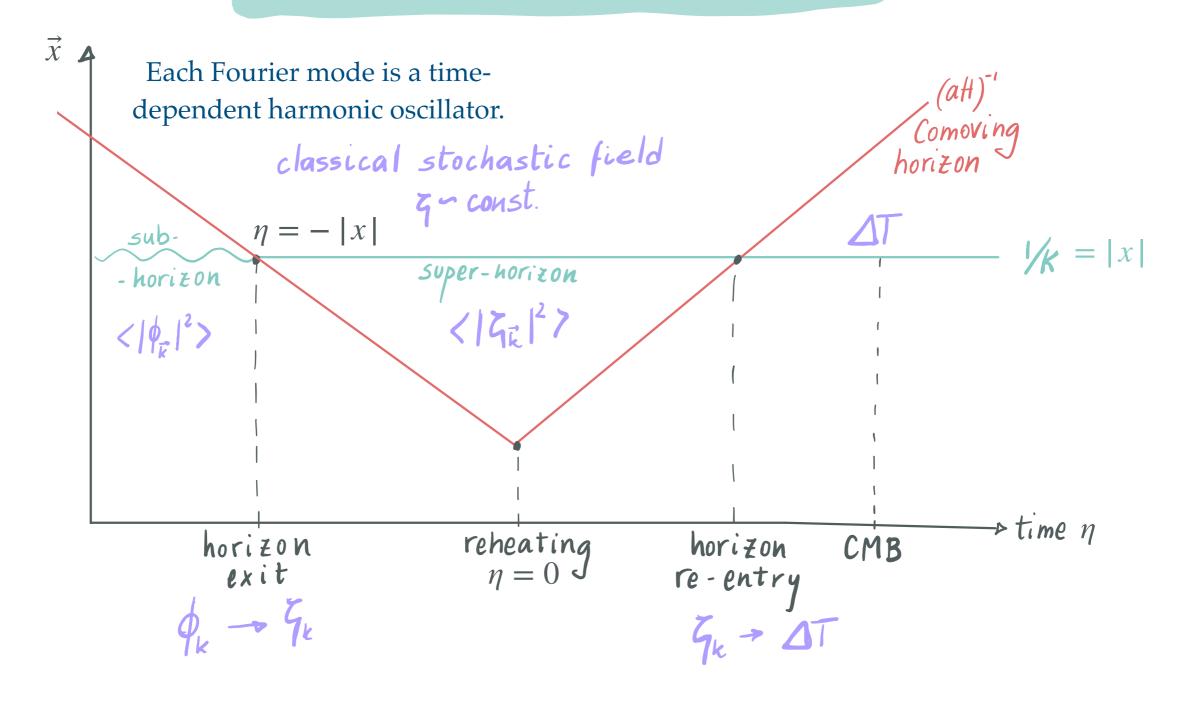
Horizon problem: why do we see homogeneity of causally disconnected regions of space ?



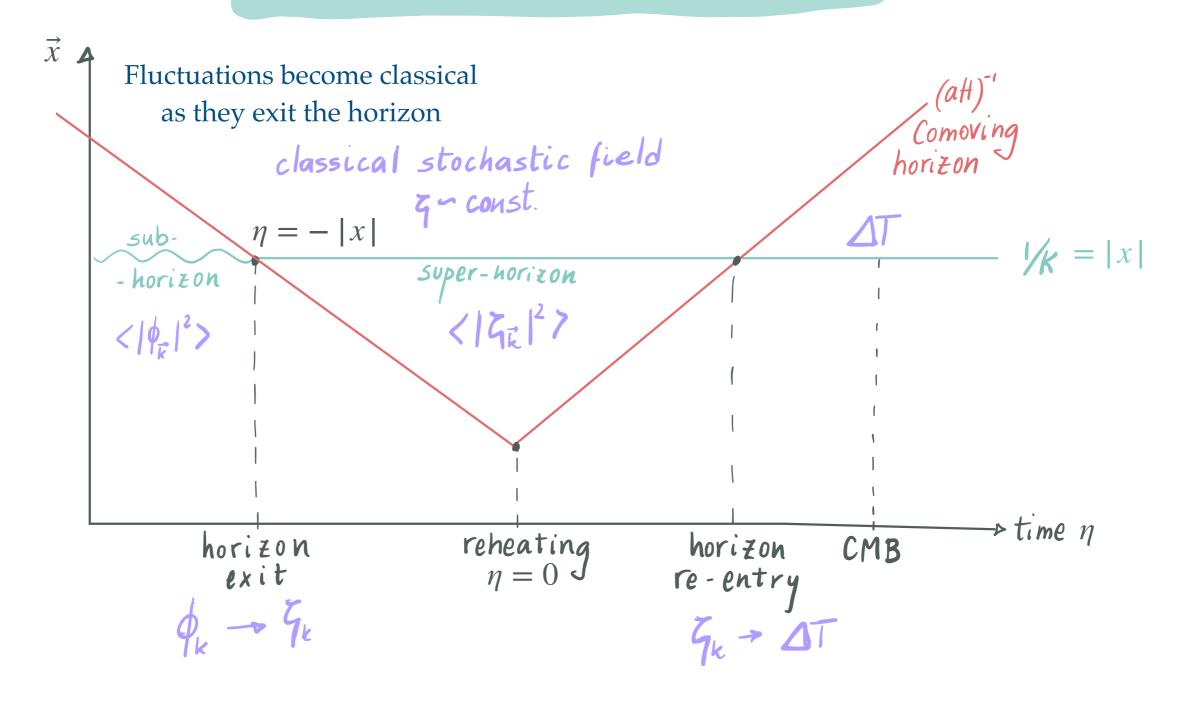
classical approximation \$=\$,(t)



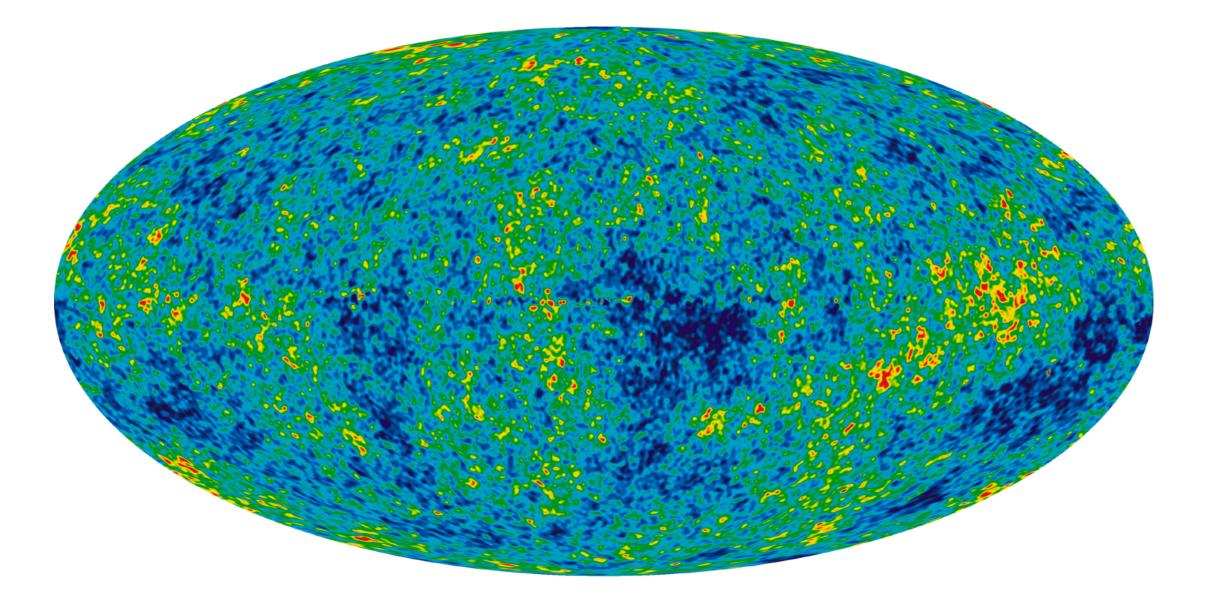
classical approximation \$=\$,(t)



classical approximation \$=\$,(t) $2M \rightarrow \phi_{\overline{e}}(\eta)$ quantum fluctuations



Primordial fluctuations from QM effects in the early universe. Current observed fluctuations in the CMB are classical.



$$\frac{\Delta T}{T} \sim 10^{-5}$$

Primordial fluctuations from QM effects in the early universe. Current observed fluctuations in the CMB are classical.

Each Fourier mode is a time-dependent harmonic oscillator.

$$ds^{2} = \frac{-d\eta^{2} + dx^{2}}{\eta^{2}} \qquad S = \int \frac{d\eta}{\eta} (|\dot{\phi}|^{2} - k|\phi|^{2})$$

Fluctuations become classical as they exit the horizon

$$k^3[\zeta_k, \dot{\zeta}_{-k}] \propto i(\eta k)^3 \to 0 \text{ as } \eta k \to 0$$

At reheating we have a classical measure, or probability distribution

$$\rho(\zeta(\vec{x})) = |\Psi[\zeta(\vec{x})]|^2$$

Can we distinguish this probability distribution from a purely classical one?

Primordial fluctuations from QM effects in the early universe. Current observed fluctuations in the CMB are classical.

Each Fourier mode is a time-dependent harmonic oscillator.

$$ds^{2} = \frac{-d\eta^{2} + dx^{2}}{\eta^{2}} \qquad S = \int \frac{d\eta}{\eta} (|\dot{\phi}|^{2} - k|\phi|^{2})$$

Fluctuations become classical as they exit the horizon

$$k^{3}[\zeta_{k}, \dot{\zeta}_{-k}] \propto i(\eta k)^{3} \rightarrow 0 \text{ as } \eta k \rightarrow 0$$

In there is an additional field we can have isocurvature perturbations but we still find classical prob. distribution

 $\rho(\zeta(\vec{x}), \theta(\vec{x})) = |\Psi[\zeta(\vec{x}), \theta(\vec{x})]|^2$

Can we distinguish this probability distribution from a purely classical one?

Fundamental deviation from classical physics → Bell inequalities

All operators: A, A', B, B' have eigenvalues +1 or -1

$$A = \vec{n} \cdot \vec{\sigma}, \, A' = \vec{n}' \cdot \vec{\sigma}$$

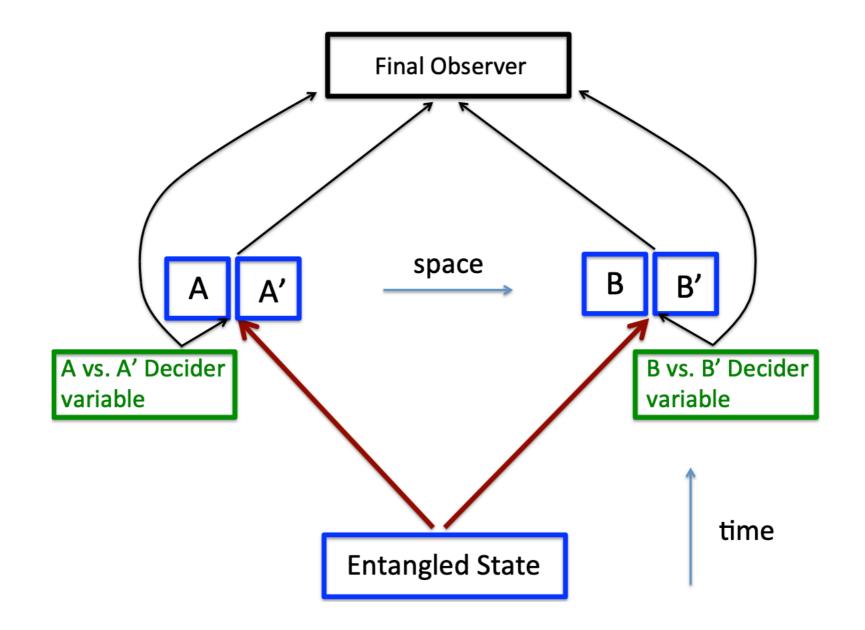
C = AB - AB' + A'B + A'B' = A(B - B') + A'(B + B')

 $C^2 = 4 + [A, A'][B, B']$

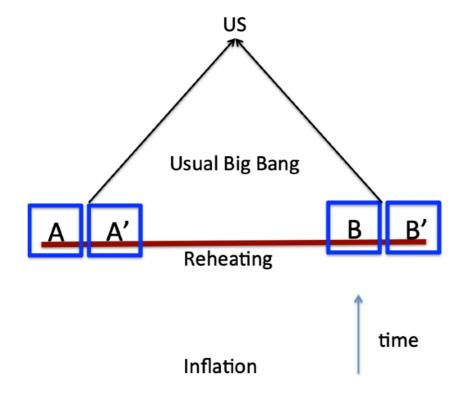
$$|C|_{QM,max} = 2\sqrt{2} > 2 = |C|_{cl,max}$$

Bell Experiment

Fundamental deviation from classical physics \rightarrow Bell inequalities

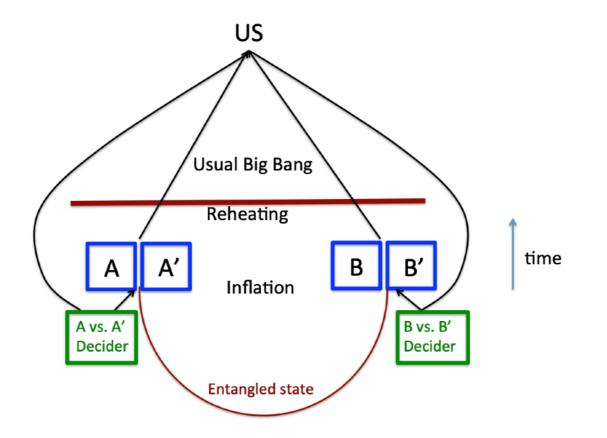


In cosmology there are only commuting observables



COSMOLOGICAL BELL EXPERIMENT

Use classical probability as classical message transmitting the result



Entangled state: ϕ_k . Measurement apparatus and decider variable $\phi_{k'}$. Measurement: process that produced a big effect on the fluctuations today E.g. massless scalar field fluctuations amplified during inflation.

Need
$$\frac{1}{k'} < \frac{1}{k}$$
 s.t. decider variable is local
 \rightarrow entangled state more classical than measuring device.

A 'BAROQUE' MODEL FOR TESTING BELL INEQUALITIES

Field, or particle content

- Inflaton ϕ ;
- Massive particles: represented by a complex scalar field, and are created in pairs. They constitute the entangled states.
- Axion: a real scalar field, on compact domain. It has non-trivial interactions with the massive particles, and plays the role of decider.

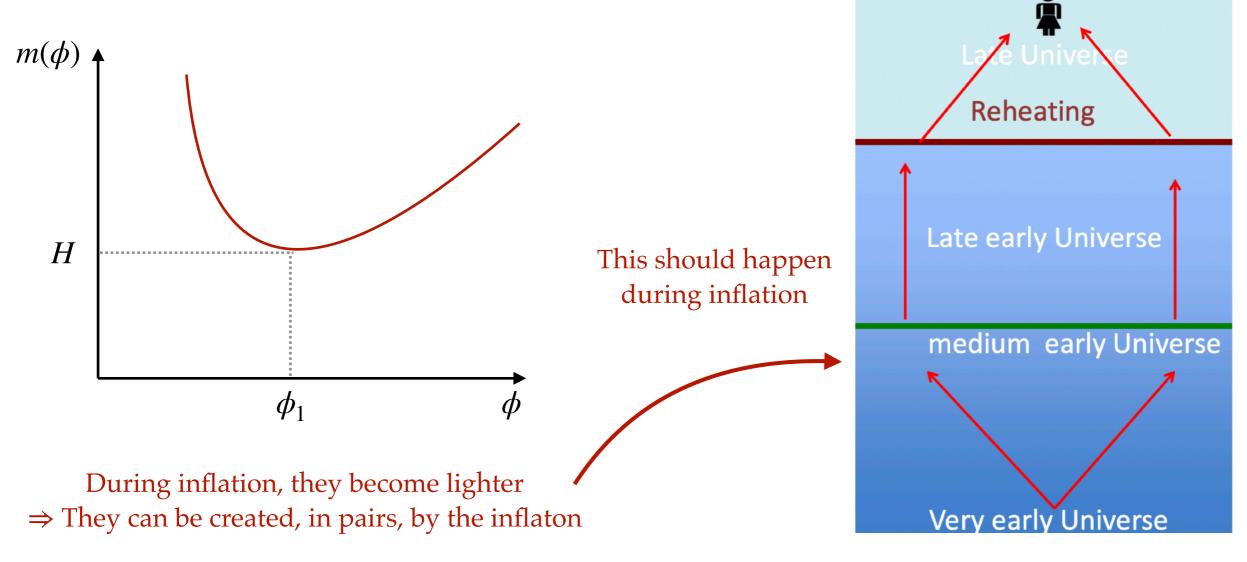
Methodology

- Measurement: the quantity that is 'measured' is the isospin of the massive particles;
- Preservation to post-inflationary observers: the signatures of the massive particles are read from the CMB fluctuations.

ENTANGLED STATES: MASSIVE PARTICLE PAIRS

We assume that there exist particles such that:

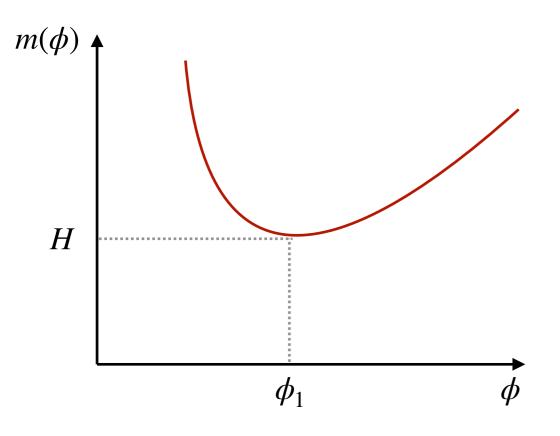
- they are represented by a complex scalar field h;
- they have isospin;
- their masses $m(\phi)$ depend on the inflaton ϕ , and they are such that they can be created during inflation:

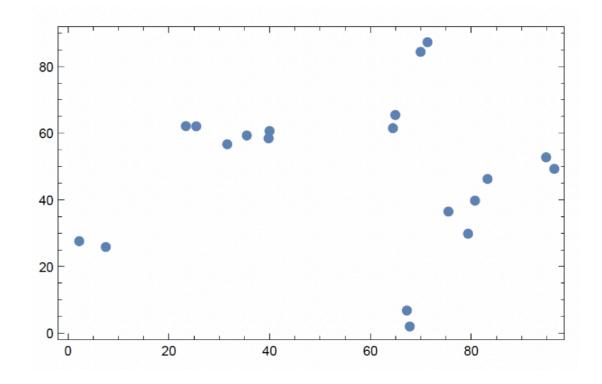


ENTANGLED STATES: MASSIVE PARTICLE PAIRS

We assume that there exist particles such that:

- they are represented by a complex scalar field h;
- they have isospin;
- their masses $m(\phi)$ depend on the inflaton ϕ , and they are such that they can be created during inflation:





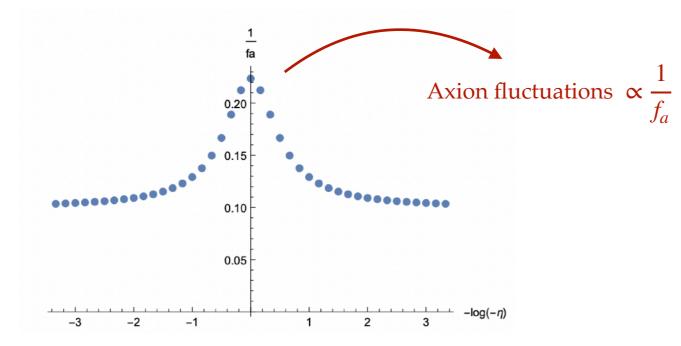
During inflation, they become lighter ⇒ They can be created, in pairs, by the inflaton ...but they must not be 'too many'! The particles have to be well-separated.

THE DECIDER: THE AXION

We assume that there exists a single axion θ :

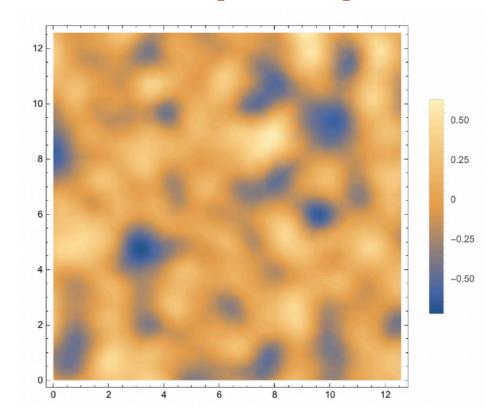
- they span a compact domain $\theta \in [-\pi, \pi[$, with the identification $\theta \sim \theta + 2\pi$;
- they appear with the action

$$S = \int f_a^2 (\nabla \theta)^2 = \int d\eta d^3 x \frac{f_a^2(\eta)}{H^2} \frac{[(\partial_\eta \theta)^2 - (\partial_i \theta)^2]}{\eta^2}$$
 Decay constant

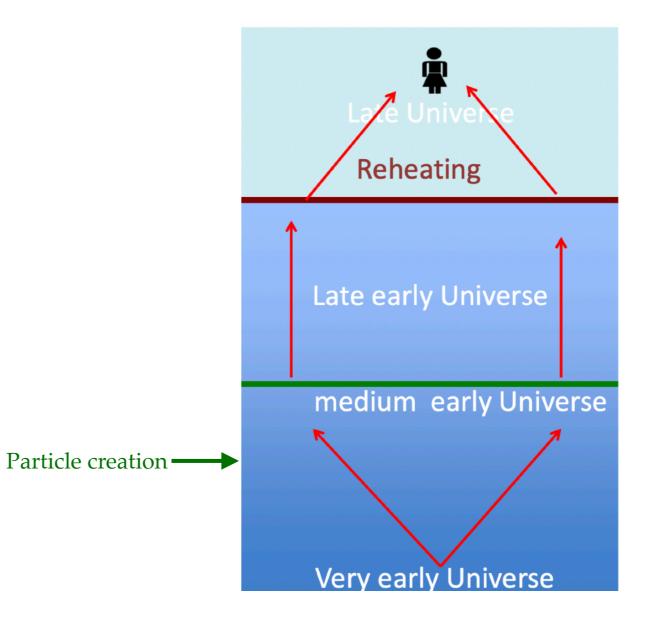


The decay constant *decreases* some time during inflation, after the creation of the massive particle

The axion has a profile in space:



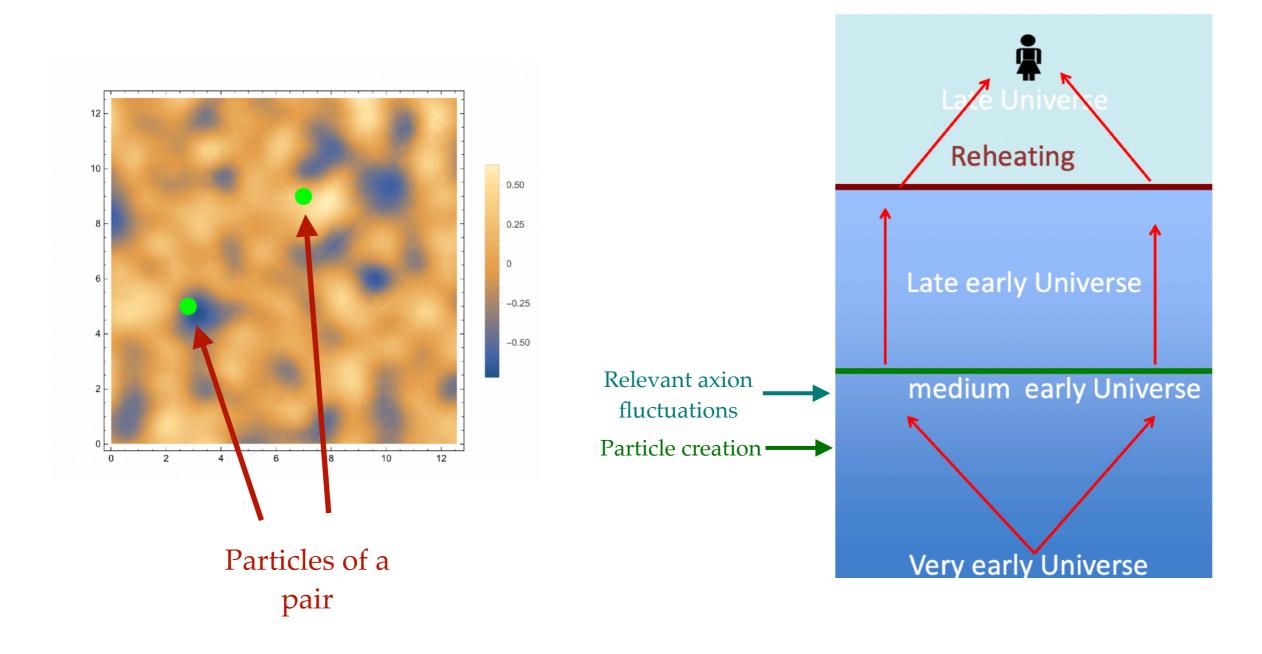
Firstly, particles are created;



Firstly, particles are created;

The axion fluctuations involve smaller distances than the distance between the particles of a pair

 \Rightarrow Each member of a pair sees a different value of the axion!



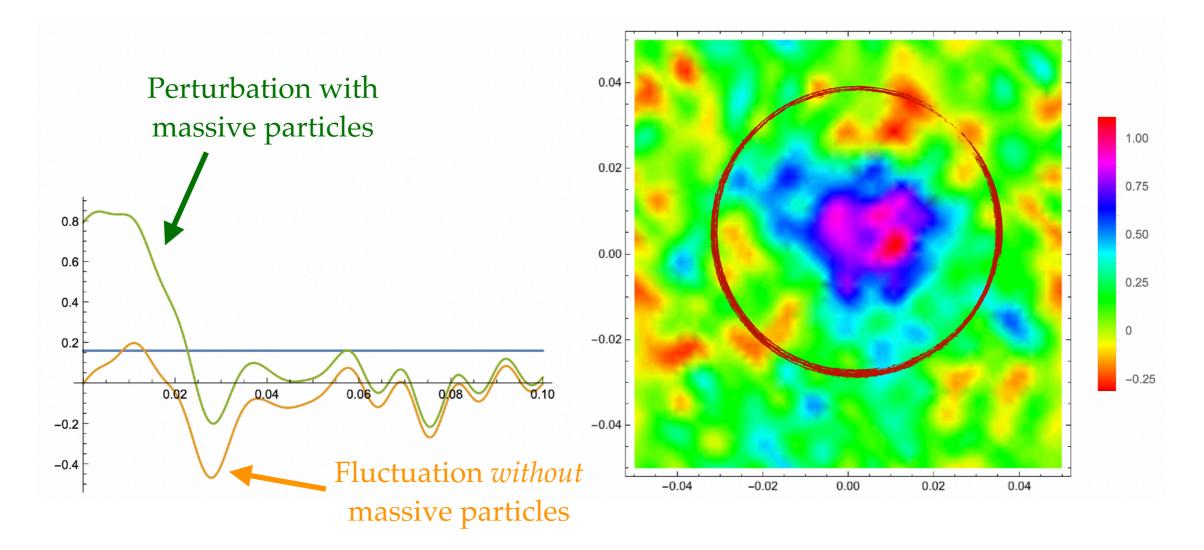
Firstly, particles are created;

- The axion fluctuations involve smaller distances than the distance between the particles of a pair
 - \Rightarrow Each member of a pair sees a different value of the axion!

The massive particles leave observable traces: they create 'hotspots' with their fluctuations

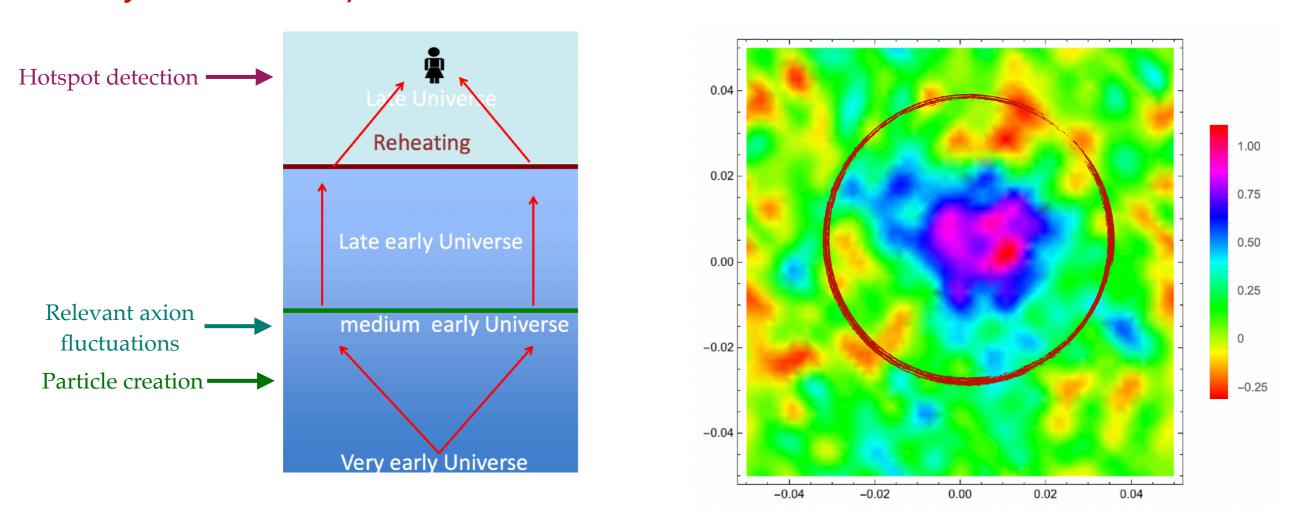
Firstly, particles are created;

- The axion fluctuations involve smaller distances than the distance between the particles of a pair
 - \Rightarrow Each member of a pair sees a different value of the axion!
- The massive particles leave observable traces: they create 'hotspots' with their fluctuations



Firstly, particles are created;

- The axion fluctuations involve smaller distances than the distance between the particles of a pair
 - \Rightarrow Each member of a pair sees a different value of the axion!
- The massive particles leave observable traces: they create 'hotspots' with their fluctuations



We want to measure the isospin projections for the particles of a pair. \Rightarrow they are ± 1 measures, and offer measures to test with Bell's inequalities.

Assume that the massive particles and the axion are coupled via Lagrangian mass terms as follows

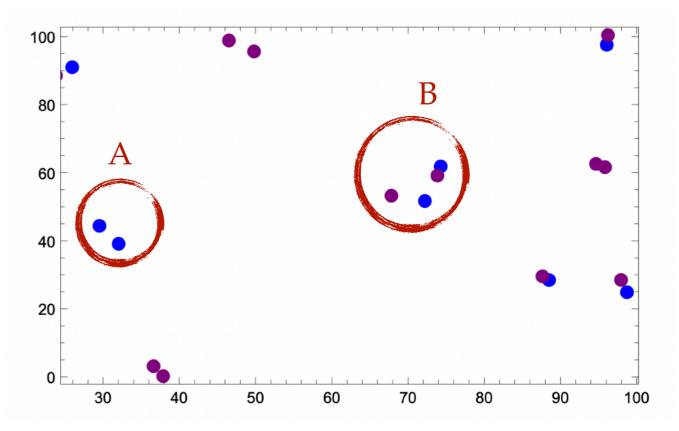
$$m_1^2(\phi)h^{\dagger}h + \lambda_2(\phi)h^{\dagger}(\sigma_x \cos n\theta + \sigma_y \sin n\theta)h = m_1^2(\phi) \left[|h_1|^2 + |h_2|^2\right] + \left[\lambda_2(\phi)e^{in\theta}h_1^*h_2 + c.c.\right]$$

The mass matrix has eigenvalues $m_{\pm} = \sqrt{m_1^2(\phi) \pm |\lambda_2(\phi)|}$

The eigenstates of the mass matrix are the same as the projection operator $\vec{\sigma} \cdot \vec{n}$ (projected along the direction with polar angle $n\theta$)

⇒ If we know the mass of a particle (*at that inflationary stage*) - i.e. whether it is m_{\pm} - we also know the associated spin-projection eigenvalue!

- We check the different particle pairs;
- ▶ We identify whether their mass is m₊ or m_;
- ▶ In turn, this identifies the associated projection $\vec{\sigma} \cdot \vec{n}$ (dictated by the axion value);
- Each particle is associated with a ±1 measurement.



Finally, we can check the Bell's inequality:

- -Define: *A* and *B* as two **locations**, such that a pair is split between them; for instance, in *A* there is a particle, in *B* the antiparticle of a pair;
- -Around *A* and *B* we perform *two* measurements, for two values of the axion \Rightarrow We obtain $(\vec{\sigma} \cdot \vec{n})_{A,A'}$ and $(\vec{\sigma} \cdot \vec{n})_{B,B'}$.
- -Define the quantity $\langle C \rangle = \langle AB \rangle + \langle AB' \rangle + \langle A'B \rangle \langle A'B' \rangle$
 - \Rightarrow test Bell's inequality

CONCLUSIONS

- The model offers a possible, concrete way of testing Bell's inequalities in a cosmological context;
- The proposed ingredients naturally appears in string theory effective theories.

However...

- ▶ The model requires a lot of **fine tuning**;
- It is very hard to check (the fluctuations employed must be subdominant).

Thanks for

your attention!