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INTRODUCTION: 
INFLATION AND BELL EXPERIMENTS



THE OBSERVABLE UNIVERSE
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THE OBSERVABLE UNIVERSE - HORIZON

ds2 = dt2 + a(t)2d ⃗x2 = a(η)2(−dη2 + d ⃗x2)
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a ∝ t1/2

a ∝ t2/3

a ∝ eHt

Horizon problem: why do we see homogeneity of causally 
disconnected regions of space ? 
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INFLATION  
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η

⃗x

= |x |
η = − |x |

η = 0
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Each Fourier mode is a time-
dependent harmonic oscillator.



INFLATION

A
alt

Comoving
classica stochasticfield horizon

g const ATTIÈ superhorizon Ht
44,15 14h i i

i i i
i i

i i

i i

rehearing
stimehorizonho E re entry

Cime

A Fa 4 at

 

i è
F Imr universetoday

ietf

initialpatch
ofspacetime

exponentiali FILE stretching
distancescale

tho years

Energy a
1 INFLATION

Fit
RE HEATING
Intese

off
hei

t 1034s
inftatonfgtno.rs
slowlyrollsdown itspotential
varying slowly H la s.t anett

classical approximation f f t
AM A 8,191 quantum fluctuations

η

⃗x

= |x |
η = − |x |

η = 0

 

i è
F Imr universetoday

ietf

initialpatch
ofspacetime

exponentiali FILE stretching
distancescale

tho years

Energy a
1 INFLATION

Fit
RE HEATING
Intese

off
hei

t 1034s
inftatonfgtno.rs
slowlyrollsdown itspotential
varying slowly H la s.t anett

classical approximation f f t
AM A 8,191 quantum fluctuations

Fluctuations become classical 
as they exit the horizon



THE CMB

Primordial fluctuations from QM effects in the early universe.
Current observed fluctuations in the CMB are classical. 

ΔT
T

∼ 10−5



OBSERVABLES

Primordial fluctuations from QM effects in the early universe.
Current observed fluctuations in the CMB are classical. 

Each Fourier mode is a time-dependent harmonic oscillator.

ds2 =
−dη2 + dx2

η2
S = ∫

dη
η

( | ·ϕ |2 − k |ϕ |2 )

Fluctuations become classical as they exit the horizon

k3[ζk,
·ζ−k] ∝ i(ηk)3 → 0 ηk → 0as

At reheating we have a classical measure, or probability distribution 

ρ(ζ( ⃗x)) = |Ψ[ζ( ⃗x)] |2

Can we distinguish this probability distribution from a purely classical one? 



OBSERVABLES

Primordial fluctuations from QM effects in the early universe.
Current observed fluctuations in the CMB are classical. 

Each Fourier mode is a time-dependent harmonic oscillator.

ds2 =
−dη2 + dx2

η2
S = ∫

dη
η

( | ·ϕ |2 − k |ϕ |2 )

Fluctuations become classical as they exit the horizon

k3[ζk,
·ζ−k] ∝ i(ηk)3 → 0 ηk → 0as

In there is an additional field we can have isocurvature perturbations

ρ(ζ( ⃗x), θ( ⃗x)) = |Ψ[ζ( ⃗x), θ( ⃗x)] |2

Can we distinguish this probability distribution from a purely classical one? 

but we still find classical prob. distribution



TESTING QM

Fundamental deviation from classical physics  Bell inequalities→
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All operators: A, A’, B, B’ have eigenvalues +1 or -1

A = ⃗n ⋅ ⃗σ , A′ = ⃗n′ ⋅ ⃗σ

C = AB − AB′ + A′ B + A′ B′ = A(B − B′ ) + A′ (B + B′ )

|C |QM,max = 2 2 > 2 = |C |cl,max

C2 = 4 + [A, A′ ][B, B′ ]



BELL EXPERIMENT

Fundamental deviation from classical physics  Bell inequalities→



COSMOLOGICAL BELL EXPERIMENT

In cosmology there are only commuting observables



COSMOLOGICAL BELL EXPERIMENT

Use classical probability as classical message transmitting the result

Entangled state:  . Measurement apparatus and decider variable  . 
Measurement: process that produced a big effect on the fluctuations today 

E.g. massless scalar field fluctuations amplified during inflation.

Need  s.t. decider variable is local

 entangled state more classical than measuring device.

ϕk ϕk′ 

1
k′ 

<
1
k

→



A ‘BAROQUE’ MODEL
FOR TESTING BELL INEQUALITIES



THE MAIN INGREDIENTS

Methodology
Measurement: the quantity that is ‘measured’ is the isospin of the 
massive particles;

Preservation to post-inflationary observers: the signatures of the 
massive particles are read from the CMB fluctuations.

Field, or particle content
Inflaton ;
Massive particles: represented by a complex scalar field, and are 
created in pairs. They constitute the entangled states. 

Axion: a real scalar field, on compact domain. It has non-trivial 
interactions with the massive particles, and plays the role of decider. 

ϕ



ENTANGLED STATES: MASSIVE PARTICLE PAIRS

We assume that there exist particles such that:
they are represented by a complex scalar field ;
they have isospin; 
their masses  depend on the inflaton , and they are such that 
they can be created during inflation:

h

m(ϕ) ϕ

During inflation, they become lighter
 They can be created, in pairs, by the inflaton⇒

m(ϕ)

H

ϕ1 ϕ

This should happen
during inflation



ENTANGLED STATES: MASSIVE PARTICLE PAIRS

We assume that there exist particles such that:
they are represented by a complex scalar field ;
they have isospin; 
their masses  depend on the inflaton , and they are such that 
they can be created during inflation:

h

m(ϕ) ϕ

…but they must not be ‘too many’!
The particles have to be well-separated.

During inflation, they become lighter
 They can be created, in pairs, by the inflaton⇒

m(ϕ)

H

ϕ1 ϕ



THE DECIDER: THE AXION

We assume that there exists a single axion :
they span a compact domain , with the identification 

;
they appear with the action

θ
θ ∈ [−π, π[

θ ∼ θ + 2π

Decay constant

The axion has a profile in space:

The decay constant decreases some time during inflation, 
after the creation of the massive particle

Axion fluctuations ∝
1
fa



THE MEASUREMENT

Firstly, particles are created;

Particle creation



THE MEASUREMENT

Firstly, particles are created;
The axion fluctuations involve smaller distances than the distance 
between the particles of a pair 

 Each member of a pair sees a different value of the axion!  ⇒

Particles of a 
pair

Particle creation

Relevant axion 
fluctuations 



THE MEASUREMENT

Firstly, particles are created;
The axion fluctuations involve smaller distances than the distance 
between the particles of a pair 

 Each member of a pair sees a different value of the axion!  ⇒

Classical 
contribution

Quantum 
contribution

The massive particles leave observable traces: 
they create ‘hotspots’ with their fluctuations



THE MEASUREMENT

Perturbation with  
massive particles

Fluctuation without  
massive particles

Firstly, particles are created;
The axion fluctuations involve smaller distances than the distance 
between the particles of a pair 

 Each member of a pair sees a different value of the axion!  ⇒
The massive particles leave observable traces: 
they create ‘hotspots’ with their fluctuations



THE MEASUREMENT

Firstly, particles are created;
The axion fluctuations involve smaller distances than the distance 
between the particles of a pair 

 Each member of a pair sees a different value of the axion!  ⇒
The massive particles leave observable traces: 
they create ‘hotspots’ with their fluctuations

Hotspot detection

Particle creation

Relevant axion 
fluctuations 



Assume that the massive particles and the axion are coupled via 
Lagrangian mass terms as follows 
 
 
 
The mass matrix has eigenvalues

The eigenstates of the mass matrix are the same as the projection 
operator  (projected along the direction with polar angle )⃗σ ⋅ ⃗n nθ

THE MEASUREMENT

We want to measure the isospin projections for the particles of a pair. 
 they are  measures, and offer measures to test with Bell’s inequalities. ⇒ ±1

 If we know the mass of a particle (at that inflationary stage) - i.e. whether 
it is  - we also know the associated spin-projection eigenvalue!
⇒

m±



THE MEASUREMENT

We check the different particle pairs;
We identify whether their mass is  
or ;
In turn, this identifies the associated 
projection  (dictated by the axion 
value);
Each particle is associated with a  
measurement.

m+
m−

⃗σ ⋅ ⃗n

±1

Finally, we can check the Bell’s inequality:
Define:  and  as two locations, such that a pair is split between them; for 
instance, in  there is a particle, in  the antiparticle of a pair;
Around  and  we perform two measurements, for two values of the axion 

 We obtain  and  .
Define the quantity  

 test Bell’s inequality

A B
A B

A B
⇒ ( ⃗σ ⋅ ⃗n)A,A′ ( ⃗σ ⋅ ⃗n)B,B′ 

⟨C⟩ = ⟨AB⟩ + ⟨AB′ ⟩ + ⟨A′ B⟩ − ⟨A′ B′ ⟩
⇒

A

B



CONCLUSIONS

The model offers a possible, concrete way of testing Bell’s inequalities in 
a cosmological context;

The proposed ingredients naturally appears in string theory effective 
theories.

However…

The model requires a lot of fine tuning;

It is very hard to check (the fluctuations employed must be 
subdominant).



Thanks for 
your attention!


