m
2% Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

A MODEL WITH
COSMOLOGICAL BELL INEQUALITIES

Margherita Putti & Stefano Lanza

Based on: arXiv:1508.01082

Gravity & Entanglement Workshop ~ Hamburg, October 9



INTRODUCTION:

INFLATION AND BELL EXPERIMENTS




THE OBSERVABLE UNIVERSE
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Big Bang Cosmology



THE OBSERVABLE UNIVERSE HORIZON
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Horizon problem: why do we see homogeneity of causally
disconnected regions of space ?
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INFLATION
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INFLATION
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Each Fourier mode is a time- Al
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INFLATION

CIGSSLCa, ﬂFlDfoximaft'OVL ¢=ﬂ(t)
AM = ¢~ /n]) c]aamtum fluctuati,oms

Fluctuations become classical -
. . (at)
as they exit the horizon -
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Primordial fluctuations from QM effects in the early universe.
Current observed fluctuations in the CMB are classical.




OBSERVABLES
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Primordial fluctuations from QM effects in the early universe.
Current observed fluctuations in the CMB are classical.

Each Fourier mode is a time-dependent harmonic oscillator.

—dn? + dx> dy
ds? = — 1 S=|—(¢|*—klop|»
n? n

Fluctuations become classical as they exit the horizon
k[ ¢ i)  i(nk)> — 0 as nk — 0
At reheating we have a classical measure, or probability distribution

p(CG) = |PICE] |

Can we distinguish this probability distribution from a purely classical one?



OBSERVABLES
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Primordial fluctuations from QM effects in the early universe.
Current observed fluctuations in the CMB are classical.

Each Fourier mode is a time-dependent harmonic oscillator.

—dn? + dx> dy
ds? = — 1 S=|—(¢|*—klop|»
n? n

Fluctuations become classical as they exit the horizon

RlGe & o itk)® — 0 as gk — 0

In there is an additional field we can have isocurvature perturbations
but we still find classical prob. distribution

p(C(R), 6()) = | PILE), 0G)] |

Can we distinguish this probability distribution from a purely classical one?



TESTING QM
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Fundamental deviation from classical physics — Bell inequalities
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All operators: A, A’, B, B” have eigenvalues +1 or -1
A=n-6,A'=1'"¢
C=AB—-AB +A'B+A'B' =AB—B)+AB+ B
C>=4+[A,Al[B,B]

Clpptmar = 2V2 > 2= | C]

cl,max



BELL EXPERIMENT
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Fundamental deviation from classical physics — Bell inequalities

Final Observer

space
A vs. A’ Decider B vs. B’ Decider
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COSMOLOGICAL BELL EXPERIMENT

In cosmology there are only commuting observables

usS

Usual Big Bang

Reheating

| time
Inflation



COSMOLOGICAL BELL EXPERIMENT

Use classical probability as classical message transmitting the result

US

Usual Big Bang

Reheating

Inflation

B vs. B’
Decider

Avs. A’
Decider

Entangled state

Entangled state: ¢, . Measurement apparatus and decider variable ¢,. .
Measurement: process that produced a big effect on the fluctuations today
E.g. massless scalar field fluctuations amplified during inflation.

Need — < —s.t. decider variable is local

— entangled state more classical than measuring device.



A ‘BAROQUE” MODEL

FOR TESTING BELL INEQUALITIES
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THE MAIN INGREDIENTS

Field, or particle content

® Inflaton ¢;

s Massive particles: represented by a complex scalar field, and are
created in pairs. They constitute the entangled states.

® Axion: a real scalar field, on compact domain. It has non-trivial
interactions with the massive particles, and plays the role of decider.

Methodology
s Measurement: the quantity that is ‘measured’ is the isospin of the
massive particles;

s Preservation to post-inflationary observers: the signatures of the
massive particles are read from the CMB fluctuations.



ENTANGLED STATES MASSIVE PARTICLE PAIRS

We assume that there exist particles such that:

® they are represented by a complex scalar field #;
s they have isospin;

® their masses m(¢) depend on the inflaton ¢, and they are such that
they can be created during inflation:

¥
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: during inflation
: medium early Universe
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During inflation, they become lighter
= They can be created, in pairs, by the inflaton Very early Universe




ENTANGLED STATES MASSIVE PARTICLE PAIRS

We assume that there exist particles such that:

# they are represented by a complex scalar field /;

s they have isospin;

® their masses m(¢) depend on the inflaton ¢, and they are such that
they can be created during inflation:
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During inflation, they become lighter ...but they must not be ‘too many’!
= They can be created, in pairs, by the inflaton The particles have to be well-separated.



THE DECIDER: THE AXION
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We assume that there exists a single axion -

® they span a compact domain 0 € [—x, n[, with the identification
0~ 0+ 2r;

s they appear with the action

—
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Decay constant

The axion has a profile in space:
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THE MEASUREMENT
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» Firstly, particles are created;

Particle creation ==

Reheatinx
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THE MEASUREMENT
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» Firstly, particles are created;

» The axion fluctuations involve smaller distances than the distance

between the particles of a pair

= Each member of a pair sees a different value of the axion!
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THE MEASUREMENT

» Firstly, particles are created;

» The axion fluctuations involve smaller distances than the distance
between the particles of a pair
= Each member of a pair sees a different value of the axion!

» The massive particles leave observable traces:
they create ‘hotspots’ with their fluctuations

(Cpart()) = m(n = —|z|) ( I )

2 \/2_6 M pl 2T \/276 M pl
Classical Quantum

contribution contribution
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THE MEASUREMENT

» Firstly, particles are created;

» The axion fluctuations involve smaller distances than the distance
between the particles of a pair
= Each member of a pair sees a different value of the axion!

» The massive particles leave observable traces:
they create “hotspots’” with their fluctuations
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THE MEASUREMENT
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» Firstly, particles are created;

» The axion fluctuations involve smaller distances than the distance
between the particles of a pair
= Each member of a pair sees a different value of the axion!

» The massive particles leave observable traces:
they create “hotspots’” with their fluctuations

Hotspot detection =— ® ol
: Reheatink :
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THE MEASUREMENT

We want to measure the isospin projections for the particles of a pair.
= they are £ 1 measures, and offer measures to test with Bell’s inequalities.

» Assume that the massive particles and the axion are coupled via
Lagrangian mass terms as follows

mi(p)h'h + Ao (d)h1 (o, cosnb + oy sinnf)h =
= mi(4) [|h]* + |hal?] + [Aa(@)e™ hihe + c.c.

The mass matrix has eigenvalues m4 = \/ mi (@) £ |A2(9)]

» The eigenstates of the mass matrix are the same as the projection
operator ¢ - 11 (projected along the direction with polar angle n6)

= If we know the mass of a particle (at that inflationary stage) - i.e. whether

it is m, - we also know the associated spin-projection eigenvalue!




THE MEASUREMENT

» We check the different particle pairs; 1o " e T g

> We identify whether their mass is m, A
or m_;

» In turn, this identifies the associated e

projection ¢ - 1 (dictated by the axion | {

0F\ O

value); e °

» Each particle is associated witha £1 =

measurement. : ..
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Finally, we can check the Bell’s inequality:

—Define: A and B as two locations, such that a pair is split between them; for
instance, in A there is a particle, in B the antiparticle of a pair;

—Around A and B we perform fwo measurements, for two values of the axion

= We obtain (6 - 1), 4 and (6 - 7)p .
—Define the quantity (C) = (AB) + (AB’) + (A’'B) — (A'B’)
= test Bell’s inequality




CONCLUSIONS

——— e — e A ———

» The model offers a possible, concrete way of testing Bell’s inequalities in
a cosmological context;

» The proposed ingredients naturally appears in string theory effective
theories.

However...

» The model requires a lot of fine tuning;

» It is very hard to check (the fluctuations employed must be
subdominant).
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