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Entangled photon pair associated
with a quantum event

An example to fix ideas :

Annihilation of an electron
and a positron leading to
the emission of a pair of

entangled y photons
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Entanglement associated
with conservation laws

Linear and angular momenta
of the outgoing two-photon

contributions of each photon

state are sums of

As linear and angular
momenta are conserved
in the annihilation event,
they are also those of the

ingoing e~ + e* state

Detections of the two
photons give access to
the positions in space
and time of the
annihilation event

Detector 1 Detector 2
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Annihilation event

Quantum position in space
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In Heisenberg quantum mechanics, position in space
is an observable conjugated to momentum

P, X] = —

Orbital or spin variables
of the two photons are
entangled

Detector 1 Detector 2
Y Y

Annihilation event

[A,B] = AB — BA

Heisenberg inequality is deduced from this basic rule

AX? = (X7) -

AP? = (P?) — (P)*
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AXAP

It is commonly admitted that it is impossible to define a
guantum observable for the position in time, which damages
the connection between quantum physics and relativity




Quantum position in time ?

Quantum space-time ?

“In quantum mechanics, time is a quite different thing than
space coordinates. It is a parameter the value of which is
supposed to be exactly known : it is in fact the old good
time of Newton...

.. it seems to me doubtless that we will have to give up this
too classical notion of time...

.. This notion of time is seriously insufficient in quantum
mechanics (or in its current understanding)...

.. The knowledge of the variable t is obtained by observing

a physical system... Time is an observable and must be
treated as an observable. ”

If one disregards the quantum structure, one can justify the
introduction of the metric “operationally” by pointing to the
fact that one can hardly doubt the physical reality of
the elementary light-cone attached to a point

In doing so, one implicitly makes use of the existence of an
arbitrary sharp signal. Such a signal however, as regards
the quantum facts, involves infinitely high frequencies and
energies

This kind of a physical justification for the introduction of the
metric falls by the wayside, unless one limits ourselves to
the “macroscopic”

E. Schrédinger : Annales Institut Henri Poincaré 1932

Outline of the talk

Positions in space and time can be built up on
transfers of propagating massless fields

A. Einstein : Reply to criticisms in
« Albert Einstein Philosopher-Scientist » P. A. Schilpp ed 1949

Einstein synchronization

Simple model first in 1d space (2d space-time) :
» Synchronization observables along a propagating field

» Localization observables defined from the incidence of
fields propagating in different directions

1-d space

An emitter e with a clock
transfers a time reference

pulse

General solution in 3d space (4d space-time):
» Electromagnetic field in 3d space with spin
» Quantum relativistic observables, and their properties

to a receiver v with a clock /\ @
-
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Products of this construction :
» Equivalence principle (for constant gravity and acceleration)
» Quantum expressions obtained for the metric

The time reference may be defined as the “center of energy”
of the field pulse. It is a quantity encoded on the field and
conserved by propagation.




Einstein synchronization
on a space-time diagram

In classical physics the time t
reference is simply a light-cone
variable and the meaning of
time transfer is clear on a
space-time diagram

The emitter e
and receiver v
share a common value
of the light-cone variable

Localization of a
quantum event

Two detectors measure the
light-cone variables for light
rays emitted in two different
directions at a given event
(say an annihilation event)

Detector 1

1-d space
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Annihilation event
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Collecting measurements of the two detectors allows one
to deduce the positions in space and time of the event
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Einstein localization on
a space-time diagram

Localization techniques
also have a clear meaning
on such a diagram. An
observer measures time
references coming from
two different directions

Reference 1

Observer

Reference 2

t =

2

The observer deduces its positions in
space and time from the two light-cone variables
Uty +u—

Y

& W — Ty

c 2

Synchronization with
quantum fields

The reference shared by
the two observers is a
quantum observable
encoded on the field and
conserved by propagation

1-d space|iu

We use the barycenter of

the energy density Ui
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E,and U, are conjugated
[E—H U—l—] = {E—7U—} =h
[Ey,U_]=[E_,U4| =0
U, is not defined in vacuum

E,L= /ei (uy) duy

AB + BA
2
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A-B



Localization in space-time | 1-d space
with quantum fields

Quantum positions in space and time may be defined from
two light-cone observables

T_U++U_ X U -0,
B 2 e 2

Heisenberg rules and relativity

Positions in time and space are quantum observables and
they are conjugated to energy and momentum

E=E.,+E_, ¢cP=FE,—E_,

[E,T] =+, [P,X]=—ih

Positions are defined only when there is energy
(at least one photon) in each of two different directions

Electromagnetic fields in 3-d space

When writing Lorentz transformations

T'=5(cT-BX) , X'=~(X—BeT)
Eo(E) . r(r-sd)

G

we need time to be conjugated

to energy to ensure that the
commutator between momentum

and space position is preserved

[E,T] = — [P, X] = i
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[P, X'] = [P, X]

If the time operator did not exist, or was not conjugated to
energy, then the commutator between momentum and
position could not be preserved by Lorentz transformations
(the Heisenberg rules would be incompatible with relativity)

Symmetry generators

Same strategy : we will define positions in space-time from the
algebra describing the symmetries of the field theory

This strategy is often used by starting from Galileo or Poincaré
groups describing the space-time symmetries associated with
Galilean and Einsteinian relativities

Here we use the larger conformal group of symmetries
of electromagnetic field theory to go further

Quantum observables will be defined from the symmetry
generators (translations, rotations, boosts)

Relativistic shifts under symmetry transformations and quantum
commutators will be deduced from algebraic calculations in the
“enveloping algebra” built up on the conformal algebra

New notation for commutators

| Special relativity (Einstein 1905) |

AB - BA

(A,B) = =

Poincaré generators
(Pw P,,) =0

i, v =0, 1,2,3T

’ 4 translations in space-time ‘

ey Pp) = Bualn = Hup i |6 rotations in space-time

(Juvs Jpo) = Mwpduo + MuoJvp = MupJve — MvoJup

Dilatation generator (D, P,) = P,
(D, Juw) =0

Symmetry also noticed
but not used by
Einstein in 1905

Jw=P, X, —P, X, + S
D=P+. X,

Decomposition into orbital and spin angular momenta

Spin is transverse
PH. S,W =0
I




Localization observables

For states containing at least two photons propagating in
two different directions, 22 _ p2__
, >ctl M2 = P?=P'P, #0
mass is not vanishing,
1%
which allows one to define X, = PM D+ P JVM
g =

positions in space-time P2

The four position components are .
conjugated to the four momenta (P“’ Xy) = v

They have non null commutators (X X ) o S,w/
. - Mo 17 - 2
which reproduce the spin P

These results go beyond classical relativistic conceptions

Perfectly localized signal is impossible for electromagnetic fields
which bear an intrinsic spin

Spin and orbital properties are coupled

Relativistic shifts of observables

Shifts of observables under frame transformations are
given by commutators with symmetry generators

Shifts of positions under

translations, (P;u Xp) = —Nup
rotations, boosts (JW, Xp) — "VpXu _ nule/
and dilatation (D X ) =

yAp) = P

have classically-looking forms

Shifts of momenta under

translations, (P,,P,) =0
rotations, boosts (J/un Pp) = nyppu — nuppy
and dilatation

| | (D, Pp) =P,

have classically-looking forms

If you want more information about the calculations,
send me a mail asking for references

Conformal symmetry of electromagnetism

Redshift laws

1
A0 = 5 (a?C)p,0)

Electromagnetic field theory is invariant under the larger group of
conformal transformations with 15 generators (4d space-time) :
4 translations + 6 rotations + 1 dilatation
+ 4 transformations to uniformly accelerated frames

H. Bateman Proc London Math Soc 1909
E. Cunningham ibidem 1909
E. Bessel-Hagen, Math. Annalen 1921

The conformal symmetry algebra

determines thg redshifts, (D, Cu) _ _Cu

that are the shifts

under transformations (‘]MW CP) - nVPCN o nHPC’/
to accelerated frames [Cps G} =1

(P,,Cy) = —2n,,D —2J,,

Redshifts of momenta contain classical terms related to positions
and extra terms related to spin

AP =d"P-X—d’(P,-X, —P,-X,+5,,

Redshifts for positions contain classical terms and non classical
ones. The extra terms do not break the symmetry properties,
they are consequences of the conformal symmetry

Canonical commutators keep the same form after conformal
transformations to accelerated frames
(h invariant) By (P, X} =0

Metric relations are obtained with classical expressions in terms of
the gravity potential arising from the acceleration

(P/u AaXV) + (Pw AaXu) = 277/W(I)a(X)
}@a(X) = apo\




Quantum mass

Quantum proper time

Mass observable is invariant under translations,
rotations and boosts, (PyyM)=0, (Ju,M)=0
but not under dilatation (D7 M) =M

It has the same dimension as momenta
(c invariant under conformal transformations)

A proper time observable can be defined from the dilatation
generator and the mass D=M-1

It has the same dimension as positions (D,1)=—-1

Redshift of mass is determined by the

gravity potential AM =M -, (X)

This amounts to include the gravitational energy in the mass M
in accordance with the equivalence principle

The proper time observable is conjugated
to the mass observable (r,M) =1

As their commutator is a number, variations of the two
observables are necessarily
directly related to each other Ay (1,M) =0

Equivalence between acceleration and gravity brought into the
domain of quantum observables

Acknowledgement : Results proven only for
special relativity + dilatation + uniform acceleration

Pound-Rebka experiment

The first precise quantum test (1960)
of the Einstein redshift law

» Comparison of y emission lines of Fe-57
nuclei by using Mdssbauer resonance
spectroscopy and compensating the
redshift by a Doppler shift

» Fe-57 samples in the basement and on
the roof of Jefferson laboratory (Harvard)

Einstein redshift A AP gAZ
measured with an ~ 5 ~ 5

accuracy of a few % v c
(for an altitude 9
difference = 22,5 m) 2

Gravity force tends to pull clocks
to places where they tick
at a slower rate

Pound-Rebka experiment

The two physicists performing (together) the
Pound-Rebka experiment at the basement and
on the roof have the same right to claim that
they have the correct value for frequency

When comparing their values, they have to take

into account the Einstein redshift

They have to treat their results
consistently for frequencies and masses,
which amounts to include the gravitational
energy in the mass observable according
to the equivalence principle




ENTANGLED PHOTON PAIRS, The Pauli no-go theorem

QUANTUM EVENTS AND THE There exists a theorem, attributed to Pauli, stating that it is
EQUIVALENCE PRINCIPLE impossible to define a quantum observable for time

Precise form of the Pauli theorem :

Serge REYNAUD there is no operator T with the three properties

Laboratoire Kastler Brossel Gravity and Entanglement

(CNRS, SU, ENS-PSL, CdF) 7-9 october 2024 Hamburg 1. Tis conjugated to energy E
2. Eis bounded (for example E=0)
If yow want morve detailsy about the 3. Tis self-adjoint
calclations; send a mail asking for references
serge.reynaud@lkb.upmec.fr The theorem is a valid formal statement but its premises

cannot be applied to the observable defined above

The observable X, is not self-adjoint as it is not defined in all

S | e &L SoniieE Laborataire Kastler Brossel states (photons in two different directions are needed
'PSL* ! | P
ERIRVBE%;‘GI.E ENS = F 30— — \ ysique quantique et applications
Positions and spin P2 = PrP, 40 GNSS localization
Relativistic spin : Positions in space and time are defined from
; : _ incidence of electromagnetic time references in
Pauli-Lubanski vector W, = —=€up0J""P° inc elec :
a 2 HPe Global Navigation Satellite Systems (GNSS)
. L3
Spintensor S, = i
i A receiver deduces its
. | TXYZ-positions from
Position components have 3 | %, radio signals emitted by
a non null commutator % i e at least four satellites
S ) A
related to the spin e Ny 2
- W L
(X XV) = S/W B 4 Radio signals are phase
= P2 fronts generated onboard
the satellites and stamped
Spin determines the quantum dispersion of positions s Y emsmsi || L ore from atomic clocks
quantities: position in three dimensions (X, Y, Z) and GPS time (T).
— Einstein’s “sharp signal” is impossible for the EM field Image Peter H. Dana, The University of Colorado




