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Gravity from Entanglement:
Observable Consequences

1. Gravity, entanglement and the holographic principle.
2. Observable quantum gravity effects in interferometers.

3. Gravity from entanglement: observed consequences.



Is quantum gravity observable?

Standard lore:

QG is only observable at the Planck scale.

Why this may not be true:

* QG leadsto divergences
* Black hole information paradox
* Holographic principle

 [nfrared effects




Is quantum gravity observable?
Effective field theory approach to General Relativity suggest
E? L?
M2 2

quantum gravity effects are surpressed by powers of :

Observable signatures of QG require enhancement due to infrared effects

Theoretical arguments why QG involves situations where (naive) EFT intuition breaks down.

* string theory: UV/IR correspondence
* Dblack hole information paradox
* holography

* soft physics

* Inherent non-locality
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Bekenstein-Hawking Entropy
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Hawking temperature
horizon hh:

L , x = surface gravity
Two possible interpretations

S = log(# black hole microstates)

S = entanglement entropy of spacetime vacuum



Ryu-Takanayagi Formula in AdS/CFT
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@ The entanglement entropy of a boundary
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Quantum Entanglement of the Vacuum

lvac) = Z 1K), | K;) e "Ki/h

The Minkowski vacuum, when viewed from the perspective of an

accelerated observer, looks like a purified thermal state.

This is nowadays called the Thermo-field double state.



1st law of entanglement entropy N

5 = —tr(plog p) p = tra (V) ()
€_K K
p=— / = tr (6 )

Modular Hamiltonian K: defined by entanglement =>
becomes boost generator ( = emergent time)

05 = 0(K) 0(K) =tr (6pK)



Minimal Surface
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Gravity from Quantum Entanglement

Gravitational equations are
derived from 1st law
of entanglement entropy

Ryu, Takanayagi
van Raamsdonk
Myers, Casini etal.



Observables in quantum gravity are inherently non-local

General covariance => observables are defined relationally.

In AdS/CFT observables are defined in relation to the boundary.

Minkowski
(boundary

We do not live in Anti-de Sitter space... but we can learn from AdS/CFT



Black hole information paradox

Semiclassical GR + local EFT:
BH formation + evaporation
destroys (quantum) information.

Unitarity in QM: can only be restored

via non-local qguantum gravity effects.
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Lessons learned from the
Black hole information paradox

Horizon scale physics

Quantum entanglement.

Quantum chaos

Shockwaves

’t Hooft commutation relations

(X" (2,2), X (¢,2)] = 8miGNG(z — 2)
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Causal Diamond

contains single light path < 0

1st
\ .
\\ mirror

2nd
mirror

Length fluctuations T
0L = (dv(L) + du(L)) /2. dv(L)
0L? = du(L)dv(L) Su(L)
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Calculation follows Marolf’s argument

Via the coordinate transformation

(u—L)(v—=L)y=4L*f(R), log

u—»L T
v—L L

The metric becomes spherical Rindler space

dR?
ds? = — f(R)dT? + ® + r2(d6? + sin® 6d¢?),

Backreaction effects are encoded in the potential @
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Causal Diamond L,

boundary behaves like U S
Rindler horizon
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Modular energy fluctuations )
lead to variations of the Newtonian potential
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Observational signatures in interferometer experiments
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Causal Diamonds, Entanglement and Modular Energy

Entanglement entropy:

(K) =

A(X)
AG

Region bounded by past and future lightcones
of two timelike seperated points.

Described by a density matrix:

p = try (Jvac)(vac|) = e "

Modular Energy fluctuations

(ak?y =212



Spacetime Fluctuations in AdS/CFT

(with Kathryn Zurek)
The AdS-metric

dz? + dx? — dz

2 72
ds® = L -

can be transformed to the AdS-Rindler metric

—1
ds® = — (ﬁ — 1) dt* + (ﬁ — 1) dr? 4+ r?dy.?
_ L2 L2 d—1:

The fluctuations in the modular Hamiltonian

AK = / gL TRy,
C

Can be computed using (a gravitational version of) the replica method



Spacetime Fluctuations in AdS/CFT

From the free energy on the n-fold cover

Zn = tr(e”™) = g7

One derives the expectation value and
fluctuations of the modular Hamiltonian

d2

(€)= (B, (oK) == (wR)|
One finds
(K) = ftl(—? (AKT) = %




Modular Energy Fluctuations from ‘t Hooft commutation relations

Metric fluctuations ds®’ = —dudv + V, X "dudy + V, X"dvdy + dy2.

T
y The modular energy equals
¢ K=— [g X (y)V, X"
0 00
:/dd‘Zy {/ duX“Tuu+/ de'”Tw]
—00 0
As operators the coordinate shifts obey
T_

(X*)X*(¥)) = 62wy,



Modular Energy Fluctuations from ‘t Hooft commutation relations

Metric fluctuations ds®’ = —dudv + V, X "dudy + V, X"dvdy + dy2.

The modular energy equals /
1 d—2 Uu v
K= gd 2 d“*y V,X"(y)V,X"(y)

We derive using <X“(y)X”(y’)> = 0% f(y,v).

the following size of the metric fluctuations

<(59y“59y”)2> ~ <[VyX “VyX”]czwg> ~ (%)H
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Gravity from the Quantum Entanglement of Space Time
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Relation with Celestial Holography

: ~ 2d CCFT
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2d CELESTIAL CORRELATOR

4d S-MATRIX

4d Lorentz
— conformal

symmetry symmetry



Relation with Celestial Holography talks by Ana, Andrea, Temple

and Kathryn
Memory
- Effect
/ j + future null oo Fourler vacuum

transform ansition

4d Quantum Gravity

Soft
:7_ past null co Theorem Ward

time . Asym ptOtiC
I Symmetry
space

identity

The shockwave geometries are related to the gravitational memory
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Black hole hole thermodynamics relates Einstein equations
to 1st law of thermodynamics = derivable from microscopic theory

k dA
dM = dEl =TdS
21 4G
k — surface gravity Emergent gravity = derivable

from microscopic theory!



Gravity and spacetime from quantum entanglement.

A change in the modular energy for a region of size R

2 |2
K=27T/d”m<r 2T]az\ )Too(x)

gives a change in the entanglement entropy

AA(R)
4G

=> the Einstein equations when the volume is kept fixed.

= 2mtMR

Ted Jacobson,
Manus Visser

Can gravity and spacetime be derived purely from Quantum
entanglement? What are the additional assumptions?



What is the Microscopic Quantum description of de Sitter space

2 d 2
dsQZ—(l—%>dt2+1_§2/L2+R2d§22

What is the interpretation of the de Sitter entropy?

What is the microscopic explanation of S A(L)
AS = -2 ML

Can we again derive the gravitational equations?

Why does gravity appear to behave differently when

A(R) P
< —— 7 !
2rM L < e
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Matter entangles with Dark Energy

The empirical fact

GM _ cHy
R? 2

implies that DM-effects appear when

27TMCR - A(R)® R
h 4Gh L

The left hand side is the entanglement entropy of matter.

The right hand side represents the entropy contained in DE.




