What precisely can we learn from "quantum gravity experiments"?

Daniel Carney

The basic line of questioning

"Is gravity quantum?"

- Can the gravitational field be put into quantum superposition?
- Can we measure this?
- What would it mean if we do?

From Markus Aspelmeyer

Review: Carney, Stamp, Taylor 1807.11494

Q&A

- 1. Do we have a theory of quantum gravity that works?
- 2. What if gravity isn't quantum?
- 3. Can we detect gravitons (in practice)? If so, does it matter?
- 4. Can we detect entanglement generation by the Newton interaction (in practice)? If so, does it matter?
- 5. Do you expect large quantum gravity fluctuations in interferometers?

1. Do we have a theory of quantum gravity that works?

$$S = \frac{1}{8\pi G_N} \int d^4x \sqrt{-g} \left[R + \mathcal{L}_{\text{matter}} + \frac{c_1}{m_{\text{Pl}}^2} R^2 + \cdots \right] \qquad \qquad \hat{g}_{\mu\nu} = \eta_{\mu\nu} + \hat{h}_{\mu\nu}$$

Effective field theory: Quantize metric fluctuations \rightarrow gravitons, same as EM field \rightarrow photons.

Valid energy at densities where $R/m_{pl}^2 \ll 1$ (i.e., almost anywhere other than near singularities).

Inevitable under simple assumptions. Any **alternative hypothesis** must violate one of:

- Unitary scattering
- Lorentz invariance
- Cluster decomposition ("spacetime locality")

For example, string theory reduces to this model at low energies.

FAQ

- 1. Do we have a theory of quantum gravity that works?
- 2. What if gravity isn't quantum?
- 3. Can we detect gravitons (in practice)? If so, does it matter?
- 4. Can we detect entanglement generation by the Newton interaction (in practice)? If so, does it matter?
- 5. Do you expect large quantum gravity fluctuations in interferometers?

"Standard quantum gravity"

Basic prediction from virtual graviton exchange

$$id \left|\psi
ight
angle = \left[-\sum_{i
eq j} rac{G_N m_i m_j}{\left|\hat{\mathbf{x}}_i - \left\langle\hat{\mathbf{x}}_j
ight
angle}
ight| dt + dW
ight] \left|\psi
ight
angle$$

No entanglement ("classical gravity")

Not coherent—has intrinsic noise

Kafri, Milburn, Taylor 1404.3214 + many others

Reproduces average EOM of Newtonian gravity. No entanglement can be generated. Two free parameters: v, $\pmb{\sigma}$

Kafri, Milburn, Taylor 1404.3214 Carney, Taylor 2301.08378

Violation of unitarity \rightarrow anomalous heating, decoherence etc

$$\left\langle \frac{dE}{dt} \right\rangle_{\rm BA} \approx \frac{v^2}{\sigma^2}$$

$$\left\langle \frac{dE}{dt} \right\rangle_{\rm shot} \approx \frac{G_N^2 m_a \rho_0}{v^2 d}$$

How to rule out unconstrained parameter space?

- Test if gravity can entangle
- Test if gravity generates anomalous noise

See questions 4,5.

Carney, Taylor 2301.08378

$$\hat{H}_{\rm Q} = \hat{H}_{\rm det} + \hat{H}_h + \int d^3 \mathbf{x} \hat{h}_{\mu\nu} \hat{T}^{\mu\nu}$$

Quantized metric fluctuations \rightarrow h = operator

$$\hat{H}_{\rm SC} = \hat{H}_{\rm det} + H_h + \int d^3 \mathbf{x} h_{\mu\nu} \hat{T}^{\mu\nu}$$

"Classical" gravity: h = classical random variable, drawn from probability distribution P(h)

To make self-consistent, need to add additional noise terms as just discussed

Possible way to get all of this together: recent Oppenheim et al work (feel free to ask about this)

PHYSICAL REVIEW X						▶ YouTube	S
Highlights	Recent	Subjects	Accepted	Collections	Authors	4	
Featured in	Physics	Open Access				1	
A Post	A Postquantum Theory of Classical Gravity?						e
Jonathan (Phys. Rev.	an Oppenheim ev. X 13 , 041040 – Published 4 December 2023						72
Physics	See Viewpoi	int: Might There	Be No Quantum	Gravity After All?			

New Idea Solves Three Physics Mysteries at Once: Post Quantum Gravity

Sabine Hossenfelder <a>

1.47M subscribers

Subscribe

🖧 зок 🖓

Share

- Interesting attempt to make a relativistic version of the classical gravity models we just discussed
- Same basic idea: add classical stochasticity
- Detailed construction seems to predict things that don't work, e.g., scattering and orbits are wrong

$$\begin{split} \frac{d\sigma}{d^3\mathbf{p}_1'd^3\mathbf{p}_2'} &= \frac{(2\pi)^2}{u} \frac{\lambda^4}{m^4} \\ &\times \left\{ \delta^4(p_1' + p_2' - p_1 - p_2) \left[\left(\frac{1}{(\mathbf{p}_1' - \mathbf{p}_1)^2 + m_\phi^2} \right)^2 + \left(\frac{D_2}{[(\mathbf{p}_1' - \mathbf{p}_1) + m_\phi^2]^2} + D_0 \right)^2 \right] \\ &+ \delta^4(p_1' - p_1 - (p_2' - p_2)) \left(\frac{D_2}{[(\mathbf{p}_1' - \mathbf{p}_1) + m_\phi^2]^2} + D_0 \right)^2 \\ &+ \frac{VT}{(2\pi)^4} \left(\frac{D_2}{[(\mathbf{p}_1' - \mathbf{p}_1) + m_\phi^2]^2} + D_0 \right) \left(\frac{D_2}{[(\mathbf{p}_2' - \mathbf{p}_2) + m_\phi^2]^2} + D_0 \right) \right\}. \end{split}$$

Carney, Matsumura, in prep Hertzberg, Loeb 2404.13037

FAQ

- 1. Do we have a theory of quantum gravity that works?
- 2. What if gravity isn't quantum?
- 3. Can we detect gravitons (in practice)? If so, does it matter?
- 4. Can we detect entanglement generation by the Newton interaction (in practice)? If so, does it matter?
- 5. Do you expect large quantum gravity fluctuations in interferometers?

Weber bar: gravitational wave \rightarrow vibration \rightarrow voltage

Fancy quantum Weber bar: gravitational wave ("graviton") \rightarrow phonon \rightarrow voltage

Tobar, Manikandan, Beitel, Pikovski 2308.15440

Other known options:

Graviton \rightarrow photon conversion in B field [Dyson 2012]

Graviton \rightarrow sideband photon conversion in optical interferometer [GQuEST @ Caltech]

So, the answer is apparently yes.

Next question: can such a measurement distinguish these models?

$$\hat{H}_{\rm Q} = \hat{H}_{\rm det} + \hat{H}_h + \int d^3 \mathbf{x} \hat{h}_{\mu\nu} \hat{T}^{\mu\nu}$$

Quantized metric fluctuations \rightarrow h = operator

$$\hat{H}_{\rm SC} = \hat{H}_{\rm det} + H_h + \int d^3 \mathbf{x} h_{\mu\nu} \hat{T}^{\mu\nu}$$

"Classical" gravity: h = classical random variable, drawn from probability distribution P(h)

> Carney, Domcke, Rodd arXiv:2308.12988 Carney 2408.00094

Consider either quantum or classical EM fields:

$$\begin{split} \hat{H}_{\mathrm{Q}} &= \hat{H}_{\mathrm{det}} + \hat{H}_{A} + \frac{e}{m} \hat{\mathbf{p}} \cdot \hat{\mathbf{A}} & \text{Classical,} \\ & \text{random } \mathbb{P}_{\mathrm{cl}}(\mathsf{A}) \\ \hat{H}_{\mathrm{SC}} &= \hat{H}_{\mathrm{det}} + H_{A} + \frac{e}{m} \hat{\mathbf{p}} \cdot \hat{\mathbf{A}} \end{split}$$

Textbook perturbation theory leads to identical predictions for excited electron events:

$$\frac{dP(g \to c)}{dt} \approx \eta I(t) \Theta(\omega - \Delta)$$

 \rightarrow Observation of discrete photoelectrons does not require quantization of the EM field

Analogous statement is true in gravity!

Glauber 1963 Mandel and Wolf, *Quantum Optics and Coherence*

How to distinguish classical/quantum models?

Consider a single-mode state expressed in the coherent state basis:

$$ho = \int deta P(eta) \ket{eta}ig\langleeta |\,,\;\;\int deta P(eta) = 1$$

- If $P(\beta) \ge 0$ everywhere \rightarrow classical ensemble exists
- If $P(\beta) < 0$ somewhere \rightarrow can find observable w/ no classical explanation

Produced by e.g. squeezed state.

Inconsistent with semiclassical model.

$$\langle \Delta N^2
angle - \langle N
angle = \eta^2 \Delta t^2 \int deta P(eta) \Delta I_eta^2$$

Observed in optics in 1980's

Detecting sub-Poisson statistics requires detector efficiency $\sim O(1)$

$$\langle \Delta N^2
angle - \langle N
angle = \eta^2 \Delta t^2 \int deta P(eta) \Delta I_eta^2$$

In Weber bar: $\eta \sim 10^{-20}$

 \rightarrow Impossibly difficult to detect this.

FAQ

- 1. Do we have a theory of quantum gravity that works?
- 2. What if gravity isn't quantum?
- 3. Can we detect gravitons (in practice)? If so, does it matter?
- 4. Can we detect entanglement generation by the Newton interaction (in practice)? If so, does it matter?
- 5. Do you expect large quantum gravity fluctuations in interferometers?

 $|LL\rangle \rightarrow |LL\rangle + |LR\rangle + \mathrm{e}^{\mathrm{i}\Delta\phi}|RL\rangle + |RR\rangle$

$$\Delta \phi = \frac{G_{\rm N} m^2 \Delta x \Delta t}{\hbar d^2} \approx 60 \times \left(\frac{m}{1 \, \rm ng}\right)^2 \left(\frac{\Delta x}{1 \, \mu \rm m}\right) \left(\frac{\Delta t}{1 \, \rm s}\right) \left(\frac{1 \, \rm mm}{d}\right)^2$$

All of these parameters are extremely challenging to achieve, especially B field gradient, coherence time.

Example: gas collisions cause $\Gamma_{deco} \sim nAv \sim 10^8$ Hz for XHV (P $\sim 10^{-14}$ torr), T ~ 4 K He gas

Probably need more practical version, but I think some version of this is going to get done in my lifetime

$$id\ket{\psi} = -\sum_{i
eq j} rac{G_N m_i m_j}{|\hat{f x}_i - \hat{f x}_j|} dt \ket{\psi}$$

"Standard quantum gravity"

$$id\left|\psi
ight
angle = \left[-\sum_{i
eq j}rac{G_{N}m_{i}m_{j}}{\left|\hat{\mathbf{x}}_{i}-\left\langle\hat{\mathbf{x}}_{j}
ight
angle
ight|}dt+dW
ight]\left|\psi
ight
angle$$

No entanglement ("classical gravity")

Not coherent—has intrinsic noise

Kafri, Milburn, Taylor 1404.3214 + many others

Idea: ask a simpler question: is the gravitational interaction reversible/coherent?

Quantitative bound from any given experiment.

Non-entangling models: $\Gamma > 0$

Carney, Muller, Taylor 2101.11629 Streltsov, Pedernales, Plenio 2111.04570 Ma et al 2111.00936

Here is a theorem: any model in which scattering is

- unitary,
- Lorentz invariant, and
- has coherent, entangling $V_N = G m_1 m_2/r$ interaction

Necessarily has quantized gravitational radiation. (simple consequence of optical theorem)

 \rightarrow Testing these assumptions = testing if graviton exists

Belenchia et al 1807.07015 Carney 2108.06320 Danielson, Satishchandran, Wald 2112.10798

Central idea: require non-relativistic scattering amplitudes to be non-relativistic limit of a Lorentz-invariant amplitude

 \mathbf{p}_1' \mathbf{p}_2' $V_N(t)$ \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_2' \mathbf{p}_1' \mathbf{p}_2 \mathbf{p}_1

Example: consider $2 \rightarrow 2$ Newtonian scattering

$$\mathcal{M}_{\mathbf{p}_{1}\mathbf{p}_{2}\to\mathbf{p}_{1}'\mathbf{p}_{2}'} = \langle \mathbf{p}_{1}'\mathbf{p}_{2}'|V|\mathbf{p}_{1}\mathbf{p}_{2} \rangle$$

$$= \frac{G_{N}m^{2}}{(\mathbf{p}_{1}'-\mathbf{p}_{1})^{2}+\mu^{2}} \longrightarrow \frac{G_{N}m^{2}}{(p_{1}'-p_{1})^{2}+\mu^{2}}$$

$$3\text{-vector} 4\text{-vector}$$

Here $\mu \rightarrow 0$ is a regulator. Unique Lorentz-invariant extension to this order

(Can multiply and add functions which are trivial near the pole $\Delta p^2 = -\mu^2$)

$$1 = S^{\dagger}S \iff \operatorname{Im} \mathcal{M}_{\alpha \to \beta} = \sum_{X} \mathcal{M}(\alpha \to X) \mathcal{M}^{*}(\beta \to X)$$

Unitarity + Lorentz invariance requires final-state, quantized gravitational radiation (dashed lines). Argument fixes coupling ~ $G_N^{1/2}$ m, but not spin.

 \rightarrow If you can experimentally determine that the gravitational interaction is unitary and entangling, you prove that the gravitational radiation field is quantized.

Carney 2108.06320

FAQ

- 1. Do we have a theory of quantum gravity that works?
- 2. What if gravity isn't quantum?
- 3. Can we detect gravitons (in practice)? If so, does it matter?
- 4. Can we detect entanglement generation by the Newton interaction (in practice)? If so, does it matter?
- 5. Do you expect large quantum gravity fluctuations in interferometers?

5. "Holographic noise"?

Hogan 0706.1999 Chou et al 1512.01216 Verlinde, Zurek 1902.08207 Carney, Karydas, Sivaramakrishnan 2409.03894 Measure the length variations in an interferometer with baseline L. Two predictions:

$$\langle \Delta L^2 \rangle = \pi L_{\rm pl}^2 \left[\frac{12}{9} \log(L\Lambda) + \text{const.} + \mathcal{O}((L\Lambda)^{-1}) \right]$$

Graviton fluctuations

 $\langle \Delta L^2 \rangle = c L_{\rm pl} L, \quad c = \mathcal{O}(1)$

"Holographic noise"

With L ~ km ~ 10^{38} * L_{pl}, the latter might be observable. The former is definitely not.

(If c=1, this gives a position uncertainty $\Delta x \sim 10^{-16}$ m, but unclear frequency dependence...)

Violates EFT locality

5. "Holographic noise"?

Holometer experiment @ Fermilab

~MHz-band GW detector, basically small LIGO

New GQuEST experiment @ Caltech + Fermilab

~MHz-band GW detector, small LIGO + sideband photon counting readout

5. "Holographic noise"?

In perturbation theory, string theory (and therefore AdS/CFT) should reduce to graviton physics at this energy, so the naive expectation is the EFT prediction

Graviton calculation gives a **finite** answer once you include an actual model for a detector. But maybe holographic effects in non-perturbative calculation?

$$egin{aligned} \dot{X} &= -rac{\kappa}{2}X + \sqrt{\kappa}X_{\mathrm{in}} \ \dot{Y} &= -rac{\kappa}{2}Y + \sqrt{\kappa}Y_{\mathrm{in}} + F_h + gx \ \dot{x} &= rac{p}{m} \ \dot{p} &= -m\omega_m^2x - \gamma p + F_{\mathrm{m,in}} + gX. \end{aligned}$$

$$F_h = \frac{\sqrt{2\overline{n}}\omega_\ell \ell_{\rm Pl}}{V} \int \frac{d^3\mathbf{k}}{\sqrt{(2\pi)^3 2E_{\mathbf{k}}}} \sum_s \left[W_s(\mathbf{k})b_{\mathbf{k},s} + h.c.\right]$$

Jaekel, Reynaud 1994 Carney, Karydas, Sivaramakrishnan 2409.03894

FAQ

- 1. Do we have a theory of quantum gravity that works?
 - a. Yes, ordinary graviton physics
- 2. What if gravity isn't quantum?
 - a. Pretty weird! Some "classical gravity model" examples, are there better ones...?
- 3. Can we detect gravitons (in practice)? If so, does it matter?
 - a. Yes, but does not distinguish between quantum and classical gravity
- 4. Can we detect entanglement generation by the Newton interaction (in practice)? If so, does it matter?
 - a. Probably eventually, and does distinguish between quantum/classical gravity
- 5. Do you expect large quantum gravity fluctuations in interferometers?
 - a. Maybe! But would be large violation of basic graviton prediction...