Event Generators for Future Colliders

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Monte Carlo Simulation at colliders

LHC, 13 TeV, $pp \rightarrow Z \rightarrow \mu^+ \mu^-$, with pile-up

J. R. Reuter, DESY

ILC, 1 TeV, $e^+e^- \rightarrow t\bar{t}h \rightarrow jjjjjbb$

Simulation vs. Reconstruction

J. R. Reuter, DESY

"Inverse simulation": Reconstruction

Simulation vs. Reconstruction

J. R. Reuter, DESY

DESY.

J. R. Reuter, DESY

Simulating physics at a (lepton) future collider

Disclaimer: focus here mostly on future lepton colliders (e^+e^- and $\mu^+\mu^-$ colliders)

J. R. Reuter, DESY

Why are event generators important? Why are event generators non-trivial?

J. R. Reuter, DESY

Because all our forward simulation chain depends on them! Because they contain *all* our knowledge of particle physics!

Because all our forward simulation chain depends on them! Why are event generators important? Because they contain *all* our knowledge of particle physics! Why are event generators non-trivial?

J. R. Reuter, DESY

Because all our forward simulation chain depends on them! Why are event generators important? Because they contain *all* our knowledge of particle physics! Why are event generators non-trivial?

J. R. Reuter, DESY

Because all our forward simulation chain depends on them! Why are event generators important? Because they contain *all* our knowledge of particle physics! Why are event generators non-trivial?

J. R. Reuter, DESY

Because all our forward simulation chain depends on them! Why are event generators important? Because they contain *all* our knowledge of particle physics! Why are event generators non-trivial?

J. R. Reuter, DESY

Because all our forward simulation chain depends on them! Why are event generators important? Because they contain *all* our knowledge of particle physics! Why are event generators non-trivial?

J. R. Reuter, DESY

Because all our forward simulation chain depends on them! Why are event generators important? Because they contain *all* our knowledge of particle physics! Why are event generators non-trivial?

J. R. Reuter, DESY

Because all our forward simulation chain depends on them! Why are event generators important? Because they contain *all* our knowledge of particle physics! Why are event generators non-trivial?

J. R. Reuter, DESY

Because all our forward simulation chain depends on them! Why are event generators important? Because they contain *all* our knowledge of particle physics! Why are event generators non-trivial?

J. R. Reuter, DESY

Why are event generators important? Because all our forward simulation chain depends on them! Because they contain *all* our knowledge of particle physics! Why are event generators non-trivial?

J. R. Reuter, DESY

Why are event generators important? Because all our forward simulation chain depends on them! Because they contain *all* our knowledge of particle physics! Why are event generators non-trivial?

J. R. Reuter, DESY

Why are event generators important? Because all our forward simulation chain depends on them! Because they contain *all* our knowledge of particle physics! Why are event generators non-trivial?

J. R. Reuter, DESY

Because all our forward simulation chain depends on them! Why are event generators important? Because they contain all our knowledge of particle physics! Why are event generators non-trivial?

Why Monte Carlo integration/sampling?

Final State X	part.	$\dim(e^+e^- \to X)$
$\mu^+\mu^-$	2	4
jjj	3	7
$\ell^+\ell^-bb$	4	10
$\ell\ell bbj$	5	13
$\ell u \ell u b b$	6	16
$\dots \ \ell u \ell u b b j j j j$	 10	$\frac{1}{28}$

$$\left(\prod_{i=1}^{n} \widetilde{dq_i}\right) (2\pi)^4 \delta^4(p_1 + p_2 - \sum_{i=1}^{n} q_i) \equiv \left(\prod_{i=1}^{n} \frac{d^3 q_i}{(2\pi)^3 2q_i^0}\right) (2\pi)^4 \delta^4(p_1 + p_2 - \sum_{i=1}^{n} q_i)$$

$$\sigma = \int \frac{|\mathcal{M}|^2 \,\Theta(\text{cuts})}{F} d\Phi_n$$

J. R. Reuter, DESY

Dimensionality of phase space (PS) integration for *n* final state particles: dim = $3 \cdot n - 4$ (+ 2 beam parameters)

Why Monte Carlo integration/sampling?

$\left(\begin{array}{c}n\\ \end{array}\right)$	$ 1 \cdot (+ - \cdot \nabla)$	I ,	
dq_i ($\dim(e \cdot e \to X)$	part.	Final State X
i=1	4	2	$\mu^+\mu^-$
	$\overline{7}$	3	jjj
Dimensional	10	4	$\ell^+\ell^-bb$
Diffensional	13	5	$\ell\ell bbj$
	16	6	$\ell u \ell u b b$
Monto	•••	•••	• • •
wonte	28	10	$\ell u \ell u b b j j j j$
	-		

$$\sigma = \int \frac{|\mathcal{M}|^2 \,\Theta(\text{cuts})}{F} d\Phi_n$$

J. R. Reuter, DESY

$$(2\pi)^4 \delta^4(p_1 + p_2 - \sum_{i=1}^n q_i) \equiv \left(\prod_{i=1}^n \frac{d^3 q_i}{(2\pi)^3 2 q_i^0}\right) (2\pi)^4 \delta^4(p_1 + p_2 - \sum_{i=1}^n q_i)$$

ity of phase space (PS) integration for *n* final state particles: dim = $3 \cdot n - 4$ (+ 2 beam parameters)

Carlo integration is the only choice !

Numerical event sampling from probability distribution as predictions for experiments

Why Monte Carlo integration/sampling?

$\left(\prod_{i=1}^{n} \widetilde{da_i} \right)$	$\dim(e^+e^- \rightarrow X)$	nart	Final State X
$\left(\begin{array}{c} 1 \\ i=1 \end{array}^{aq_i} \right) $	$\frac{4}{4}$	2	$\frac{\mu^+\mu^-}{\mu^+\mu^-}$
	7	3	jjj
Dimensional	10	4	$\ell^+\ell^-bb$
Dimonorona	13	5	$\ell\ell bbj$
	16	6	$\ell u \ell u b b$
Monte	••••		•••
	28	10	<i></i> νενδο <i>ηη</i>

$$\sigma = \int \frac{|\mathcal{M}|^2 \Theta(\text{cuts})}{F} d\Phi_n$$

J. R. Reuter, DESY

$$(2\pi)^4 \delta^4(p_1 + p_2 - \sum_{i=1}^n q_i) \equiv \left(\prod_{i=1}^n \frac{d^3 q_i}{(2\pi)^3 2 q_i^0}\right) (2\pi)^4 \delta^4(p_1 + p_2 - \sum_{i=1}^n q_i)$$

ity of phase space (PS) integration for *n* final state particles: dim = $3 \cdot n - 4$ (+ 2 beam parameters)

Carlo integration is the only choice !

Numerical event sampling from probability distribution as predictions for experiments

• Generate weighted events, *i.e.* pairs (\vec{x}_i, w_i)

• Unweighted events: event generation with same probability as

[accept events with probability $P_i = w_i / w_{max}$] nature

Suitably choose maximal weight *w_{max}*

• Avoid wildly fluctuating weights \Rightarrow clever choice of mappings

$$I = \int f dV = \int \frac{f}{g} g dV = \left\langle \frac{f}{g} \right\rangle \pm \frac{1}{\sqrt{N}} \left\langle \left\langle \left(\frac{f}{g}\right)^2 \right\rangle - \left\langle \frac{f}{g} \right\rangle^2 \right\rangle$$

Need to know inverse and Jacobian

J. R. Reuter, DESY

Importance Sampling — Mapping phase space channels

divide out singular structures of function(s)

Sampling flat in $\int g \, dV$

$$I = \int f dV = \int \frac{f}{g} g dV = \left\langle \frac{f}{g} \right\rangle \pm \frac{1}{\sqrt{N}} \left\langle \left\langle \left(\frac{f}{g}\right)^2 \right\rangle - \left\langle \frac{f}{g} \right\rangle^2 \right\rangle$$

J. R. Reuter, DESY

Importance Sampling — Mapping phase space channels

divide out singular structures of function(s)

Sampling flat in g dVNeed to know inverse and Jacobian

$$= \int f dV = \int \frac{f}{g} g dV = \left\langle \frac{f}{g} \right\rangle \pm \frac{1}{\sqrt{N}} \sqrt{\left\langle \left(\frac{f}{g}\right)^2 \right\rangle - \left\langle \frac{f}{g} \right\rangle^2}$$

Typical application in particle physics: Breit-Wigner resonance of unstable particles:

I

J. R. Reuter, DESY

Importance Sampling — Mapping phase space channels

divide out singular structures of function(s)

Sampling flat in g dVNeed to know inverse and Jacobian

$$I = \int f dV = \int \frac{f}{g} g dV = \left\langle \frac{f}{g} \right\rangle \pm \frac{1}{\sqrt{N}} \sqrt{\left\langle \left(\frac{f}{g}\right)^2 \right\rangle - \left\langle \frac{f}{g} \right\rangle^2}$$

Typical application in particle physics: Breit-Wigner resonance of unstable particles:

J. R. Reuter, DESY

Importance Sampling — Mapping phase space channels

divide out singular structures of function(s)

Sampling flat in g dVNeed to know inverse and Jacobian

$$\overline{\mathcal{F}^2\Gamma^2}$$
 $F(s) = \arctan \frac{s - m^2}{m\Gamma} =: \xi$

divide out singular structures of function(s) Reduce crude MC error by **importance sampling**:

$$I = \int f dV = \int \frac{f}{g} g \, dV = \left\langle \frac{f}{g} \right\rangle \pm \frac{1}{\sqrt{N}} \sqrt{\left\langle \left(\frac{f}{g}\right)^2 \right\rangle - \left\langle \frac{f}{g} \right\rangle^2}$$

Typical application in particle physics: Breit-Wigner resonance of unstable particles:

J. R. Reuter, DESY

Importance Sampling — Mapping phase space channels

Sampling flat in $\int g \, dV$ Need to know inverse and Jacobian

$$\overline{2\Gamma^2}$$
 $F(s) = \arctan \frac{s - m^2}{m\Gamma} =: \xi$

$$I = \int f dV = \int \frac{f}{g} g \, dV = \left\langle \frac{f}{g} \right\rangle \pm \frac{1}{\sqrt{N}} \sqrt{\left\langle \left(\frac{f}{g}\right)^2 \right\rangle - \left\langle \frac{f}{g} \right\rangle^2}$$

Typical application in particle physics: Breit-Wigner resonance of unstable particles:

J. R. Reuter, DESY

DESY-FH Future Collider + Scientific Computing Workshop, 1.7.2024

Importance Sampling — Mapping phase space channels

$$\overline{2\Gamma^2}$$
 $F(s) = \arctan \frac{s - m^2}{m\Gamma} =: \xi$

- Finding appropriate functions for importance sampling is ... non-trivial Ş
- Ş Just use binned step function and minimize the differences to true function
- Ş 1-dim. binned distributions work very well:
- Ş This is adaptive MC integration

- Finding appropriate functions for importance sampling is ... non-trivial
- Just use binned step function and minimize the differences to true function Ş
- Ş 1-dim. binned distributions work very well:
- This is adaptive MC integration

$$g(x) = g(x_1)g(x_2)\dots g(x_n)$$

- Factorize singularities from resonances
- VEGAS algorithm [Lepage, 1978]
- Works for factorizable singularities

J. R. Reuter, DESY

- Finding appropriate functions for importance sampling is ... non-trivial
- Just use binned step function and minimize the differences to true function
- 1-dim. binned distributions work very well:
- This is adaptive MC integration

$$g(x) = g(x_1)g(x_2)\dots g(x_n)$$

$$\int_{s_0}^{s_1} f(s) ds =$$

- Factorize singularities from resonances
- VEGAS algorithm [Lepage, 1978]
- Works for factorizable singularities

J. R. Reuter, DESY

$$\sum_{i} \alpha_i \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g_i(s) ds$$

Multi-channel adaptive MC integration:

DESY-FH Future Collider + Scientific Computing Workshop, 1.7.2024

9 / 30

- Finding appropriate functions for importance sampling is ... non-trivial
- Just use binned step function and minimize the differences to true function Ş
- 1-dim. binned distributions work very well: Ş
- This is adaptive MC integration

Different algorithms of phase-space construction / mappings

- flat [RAMBO]
- simplistic heuristics [ALPGEN],
- diagram-based [MadEvent],
- [QCD-]radiation driven [SAGE, Comix/Sherpa],

J. R. Reuter, DESY

resonance/singularity importance-ordered [WHIZARD]

Machine Learning: MC for integration and simulation

- Ş Phase space integration / adaptation by Invertible Neural Networks (INNs) / normalizing flows
- Ş Define divergence-based loss function
- Ş Use of buffered losses and training
- Ş

J. R. Reuter, DESY

Hoeche ea., 2001.10028, Heimel/ Winterhalder ea., 2212.06172

Parallel MC integration: MPI and GPUs

Preliminary: Matrix element evaluation

Process	$t^{CPU}[s]$	$t^{GPU}[s]$
$e^+e^- \rightarrow t\bar{t}$	0.98	4.28
$e^+e^- ightarrow bW^+ \overline{b}W^-$	28.8	23.1
$e^+e^- \rightarrow bW^+\bar{b}W^-H$	57.5	37.8
$e^+e^- \rightarrow b\bar{b}\bar{\nu}_e e^-\bar{\nu}_\mu\mu^+$	154	124
$e^+e^- ightarrow 2j$	1.9	5.4
$e^+e^- ightarrow 3j$	45	65
$e^+e^- \rightarrow 4j$	870	608
$e^+e^- ightarrow 5j$	4106	978
$pp \rightarrow jj$	42	86
$\mid pp \rightarrow W^+W^-W^+W^-$	670	192

- Parallelization of integration: OMP multi-threading for different helicities MPI parallelization (using OpenMPI or MPICH)
- Ş Ş
- Ş Distributes workers over multiple cores, grid adaption needs non-trivial communication (Load balancer / non-blocking communication)

- Ş Speedups 10 to 30, saturation at O(100) [also parallel event generation]
- Ş Integration of $(2 \rightarrow 8)$ leading order (LO) processes: \mathcal{O} (week) $\longrightarrow \mathcal{O}$ (hour)
- Ş Becomes a must for higher-order perturbative processes (NLO, NNLO)

Braß/Kilian/JRR, arXiv:1811.09711

J. R. Reuter, DESY

Parallel MC integration: MPI and GPUs

Preliminary: Matrix element evaluation

Process	$t^{CPU}[s]$	$t^{GPU}[s]$
$e^+e^- \rightarrow t\bar{t}$	0.98	4.28
$e^+e^- ightarrow bW^+ \overline{b}W^-$	28.8	23.1
$e^+e^- \rightarrow bW^+\bar{b}W^-H$	57.5	37.8
$e^+e^- \rightarrow b\bar{b}\bar{\nu}_e e^-\bar{\nu}_\mu\mu^+$	154	124
$e^+e^- ightarrow 2j$	1.9	5.4
$e^+e^- ightarrow 3j$	45	65
$e^+e^- \rightarrow 4j$	870	608
$e^+e^- ightarrow 5j$	4106	978
$pp \rightarrow jj$	42	86
$\mid pp \rightarrow W^+W^-W^+W^-$	670	192

- Parallelization of integration: OMP multi-threading for different helicities MPI parallelization (using OpenMPI or MPICH)
- Ş Ş
- Ş Distributes workers over multiple cores, grid adaption needs non-trivial communication (Load balancer / non-blocking communication) Ş Speedups 10 to 30, saturation at O(100) [also parallel event generation] Ş Integration of $(2 \rightarrow 8)$ leading order (LO) processes: \mathcal{O} (week) $\longrightarrow \mathcal{O}$ (hour) Ş

- Becomes a must for higher-order perturbative processes (NLO, NNLO)

Braß/Kilian/JRR, arXiv:1811.09711

J. R. Reuter, DESY

Parallel MC integration: MPI and GPUs

Preliminary: Matrix element evaluation

Process	$t^{CPU}[s]$	$t^{GPU}[s]$
$e^+e^- \rightarrow t\bar{t}$	0.98	4.28
$e^+e^- ightarrow bW^+ ar b W^-$	28.8	23.1
$e^+e^- ightarrow bW^+ ar{b}W^- H$	57.5	37.8
$e^+e^- ightarrow bar{b}ar{ u}_e e^-ar{ u}_\mu\mu^+$	154	124
$e^+e^- \rightarrow 2j$	1.9	5.4
$e^+e^- ightarrow 3j$	45	65
$e^+e^- \rightarrow 4j$	870	608
$e^+e^- ightarrow 5j$	4106	978
$pp \rightarrow jj$	42	86
$pp \rightarrow W^+W^-W^+W^-$	670	192

- Parallelization of integration: OMP multi-threading for different helicities MPI parallelization (using OpenMPI or MPICH)
- Ş
- Ş Distributes workers over multiple cores, grid adaption needs non-trivial communication (Load balancer / non-blocking communication) Ş Speedups 10 to 30, saturation at O(100) [also parallel event generation] Ş Integration of $(2 \rightarrow 8)$ leading order (LO) processes: \mathcal{O} (week) $\longrightarrow \mathcal{O}$ (hour) Ş

- Becomes a must for higher-order perturbative processes (NLO, NNLO)

- Off-loading from CPU to GPU Sherpa, '20; MG5 `22; Whizard, `24
- Ş Semi-automatized ME generation for GPU in MG5 and Whizard
- Ş Matrix-element evaluation vs. phase-space integration on GPU \rightarrow Data transfer between CPU and GPU costly!
- So far no revolutionary breakthroughs

DESY.

Still a lot of work needed to make it fully competitive

J. R. Reuter, DESY

Beam simulations

J. R. Reuter, DESY

Beam structure for $\ell^+\ell^-$ colliders

Beam-induced background for the machine-detector interface (MDI)

- $^{\bigcirc}$ Dense beams \Rightarrow strong EM fields: deflect particles in other bunch (beamstrahlung)
- Depends on damping rings, final focus magnet, crossing angle, beam optics, etc.
- Effects: beam energy spread, long power-law dominated tail

J. R. Reuter, DESY

- Simulation tool for beam spectrum: GuineaPig [D. Schulte, 1998+]
- Very limited statistics: O(100k) vs. MC simulations need O(many G)
- Gaussian shape with specific spreads
- Parameterized (delta peak \oplus power law) 2.
- Avail.: [√] Generator for 2D histogrammed fit 3.

Avail.: (✓)

$$D_{\ell_1 \ell_2}(x_1, x_2) = D_{\ell_1}(x_1) \cdot D_{\ell_2}(x_2)$$

$$D_{\ell_i}(x_i) = \delta(1 - x_i) + \gamma_i x_i^{\alpha_i} \cdot (1 - x_i)^{\beta_i}$$

ILC/CLIC/C³: Beams not factorizable, no simple power law

- Simulation tool for beam spectrum: GuineaPig [D. Schulte, 1998+]
- Very limited statistics: O(100k) vs. MC simulations need O(many G)
- Avail.: 🗸 Gaussian shape with specific spreads
- Parameterized (delta peak \oplus power law) 2.
- Generator for 2D histogrammed fit 3.

Avail.: (✓)

Avail.: [√]

$$D_{\ell_1 \ell_2}(x_1, x_2) = D_{\ell_1}(x_1) \cdot D_{\ell_2}(x_2)$$

$$D_{\ell_i}(x_i) = \delta(1 - x_i) + \gamma_i x_i^{\alpha_i} \cdot (1 - x_i)^{\beta_i}$$

ILC/CLIC/C³: Beams not factorizable, no simple power law

DESY-FH Future Collider + Scientific Computing Workshop, 1.7.2024

- Simulation tool for beam spectrum:
- Gaussian shape with specific spreads
- Parameterized (delta peak \oplus power law)
- 3. Generator for 2D histogrammed fit

CLIC: Dalena/Esbjerg/Schulte [LCWS 2011]

J. R. Reuter, DESY

DESY-FH Future Collider + Scientific Computing Workshop, 1.7.2024

- Simulation tool for beam spectrum:
- Gaussian shape with specific spreads
- Parameterized (delta peak \oplus power law)
- 3. Generator for 2D histogrammed fit

J. R. Reuter, DESY

Sampling of beam spectral

based on Lumilinker T. Barklow, 2001; CIRCE2 algorithm T. Ohl, 1996, 2005

- Adapt 2D factorized variable width histogram to steep part of distribution
- Smooth correlated fluctuations with moderate Gaussian filter \bigcirc [suppresses artifacts from limited GuineaPig statistics
- Smooth continuum/boundary bins separately \bigcirc

[avoid artificial beam energy spread]

Future work: 3D structure of spectrum, does machine learning help? \bigcirc

Parameterized spectra still be useful: fast evaluation, unfolding

J. R. Reuter, DESY

Sampling of beam spectra

based on Lumilinker T. Barklow, 2001; CIRCE2 algorithm T. Ohl, 1996, 2005

- Adapt 2D factorized variable width histogram to steep part of distribution
- Smooth correlated fluctuations with moderate Gaussian filter \bigcirc [suppresses artifacts from limited GuineaPig statistics
- Smooth continuum/boundary bins separately \bigcirc

[avoid artificial beam energy spread]

Future work: 3D structure of spectrum, does machine learning help? \bigcirc

Parameterized spectra still be useful: fast evaluation, unfolding

J. R. Reuter, DESY

(171,306 GuineaPig events in 10,000 bins)

DESY-FH Future Collider + Scientific Computing Workshop, 1.7.2024

Sampling of beam spectra

based on Lumilinker T. Barklow, 2001; CIRCE2 algorithm T. Ohl, 1996, 2005

- Adapt 2D factorized variable width histogram to steep part of distribution
- Smooth correlated fluctuations with moderate Gaussian filter \bigcirc [suppresses artifacts from limited GuineaPig statistics
- Smooth continuum/boundary bins separately \bigcirc

[avoid artificial beam energy spread]

Future work: 3D structure of spectrum, does machine learning help? \bigcirc

Parameterized spectra still be useful: fast evaluation, unfolding

J. R. Reuter, DESY

Hard processes, shower, hadronization and all that

J. R. Reuter, DESY

J. R. Reuter, DESY

 \cong Perturbative amplitudes for $2 \rightarrow n$ scattering grows factorially with n

[Parke/Taylor, '86; Berends/Giele, '88; Caravaglios et al., 1998; Ohl/JRR, 2000/2023; Papadopoulos, 2001]

Directed Acyclical Graphs (DAGs) [O'Mega]

J. R. Reuter, DESY

 \cong Perturbative amplitudes for $2 \rightarrow n$ scattering grows factorially with n

[Parke/Taylor, '86; Berends/Giele, '88; Caravaglios et al., 1998; Ohl/JRR, 2000/2023; Papadopoulos, 2001]

Directed Acyclical Graphs (DAGs) [O'Mega]

J. R. Reuter, DESY

J. R. Reuter, DESY

J. R. Reuter, DESY

J. R. Reuter, DESY

		MCSANO	Cee[3	7]						
\sqrt{s} [G	$ar{s} \; [ext{GeV}] \; ig \; \; \sigma_{ ext{LO}}^{ ext{tot}} \; [ext{fb}] \; ig \; \sigma_{ ext{NI}}^{ ext{tot}}$		$_{\rm O}^{\rm t}$ [fb]	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$		$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	δ_{EV}	v [%]	$\sigma^{ m sig}~(m LO/N$	
250		225.59(1)	206	.77(1)	225.60(1)		207.0(1)	-	-8.25	0.4/2.1
500		53.74(1)	62	.42(1)	53.74(3)		62.41(2)	+	16.14	0.2/0.3
1000		12.05(1)	14	.56(1)	12.0549(6)		14.57(1)) +20.84		0.5/0.5
	Pro	ocess		WHI $\sigma_{\rm LO}$	HIZARD+OpenLoops Lo [fb] σ_{NLO} [fb]				ee @)1TeV, N
	e^+	$e^- \rightarrow jj$	622.737(8)		639.39(5)					
	e^+	$+e^- \rightarrow jjj$		340.6(5)		317.8(5)				
	e^+	$e^- \rightarrow j j j j$	105.0(3)		10	4.2(4)				
	e^+	$e^- \rightarrow j j j j j j$		22.33	3(5) 24		24.57(7)			
	e^+	$e^+e^- \rightarrow jjjjjjj$		3.583	B(17)	4.4	16(4)			

J. R. Reuter, DESY

The "Exclusive" Frontier — fN(N)LO, Automation in MCs

NLO)

		MCSANO	Cee[3	7]						
\sqrt{s} [G	$ar{s} \; [ext{GeV}] \; ig \; \; \sigma_{ ext{LO}}^{ ext{tot}} \; [ext{fb}] \; ig \; \sigma_{ ext{NI}}^{ ext{tot}}$		$_{\rm O}^{\rm t}$ [fb]	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$		$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	δ_{EV}	v [%]	$\sigma^{ m sig}~(m LO/N$	
250		225.59(1)	206	.77(1)	225.60(1)		207.0(1)	-	-8.25	0.4/2.1
500		53.74(1)	62	.42(1)	53.74(3)		62.41(2)	+	16.14	0.2/0.3
1000		12.05(1)	14	.56(1)	12.0549(6)		14.57(1)) +20.84		0.5/0.5
	Pro	ocess		WHI $\sigma_{\rm LO}$	HIZARD+OpenLoops Lo [fb] σ_{NLO} [fb]				ee @)1TeV, N
	e^+	$e^- \rightarrow jj$	622.737(8)		639.39(5)					
	e^+	$+e^- \rightarrow jjj$		340.6(5)		317.8(5)				
	e^+	$e^- \rightarrow j j j j$	105.0(3)		10	4.2(4)				
	e^+	$e^- \rightarrow j j j j j j$		22.33	3(5) 24		24.57(7)			
	e^+	$e^+e^- \rightarrow jjjjjjj$		3.583	B(17)	4.4	16(4)			

J. R. Reuter, DESY

The "Exclusive" Frontier — fN(N)LO, Automation in MCs

μμ @ 3 TeV, NLO EW

NLO)

$\mu^+\mu^- o X, \sqrt{s}$ =	$\sigma_{ m LO}^{ m incl} \; [{ m fb}]$	$\sigma_{ m NLO}^{ m incl}$ [fb]	$\delta_{ m EW}~[\%]$
W^+W^-	$4.6591(2)\cdot 10^2$	$4.847(7)\cdot 10^2$	+4.0(2)
ZZ	$2.5988(1)\cdot 10^{1}$	$2.656(2)\cdot 10^{1}$	+2.19(6)
HZ	$1.3719(1)\cdot 10^{0}$	$1.3512(5)\cdot 10^{0}$	-1.51(4)
HH	$1.60216(7) \cdot 10^{-7}$	$5.66(1) \cdot 10^{-7}$ *	
W^+W^-Z	$3.330(2)\cdot 10^{1}$	$2.568(8) \cdot 10^{1}$	-22.9(2)
W^+W^-H	$1.1253(5)\cdot 10^{0}$	$0.895(2)\cdot 10^{0}$	-20.5(2)
ZZZ	$3.598(2)\cdot 10^{-1}$	$2.68(1)\cdot 10^{-1}$	-25.5(3)
HZZ	$8.199(4)\cdot 10^{-2}$	$6.60(3)\cdot 10^{-2}$	-19.6(3)
HHZ	$3.277(1)\cdot 10^{-2}$	$2.451(5)\cdot 10^{-2}$	-25.2(1)
HHH	$2.9699(6) \cdot 10^{-8}$	$0.86(7)\cdot 10^{-8}$ *	
$W^+W^-W^+W^-$	$1.484(1)\cdot 10^{0}$	$0.993(6)\cdot 10^{0}$	-33.1(4)
W^+W^-ZZ	$1.209(1)\cdot 10^{0}$	$0.699(7)\cdot 10^{0}$	-42.2(6)
W^+W^-HZ	$8.754(8)\cdot 10^{-2}$	$6.05(4)\cdot 10^{-2}$	-30.9(5)
W^+W^-HH	$1.058(1)\cdot 10^{-2}$	$0.655(5)\cdot 10^{-2}$	-38.1(4)
ZZZZ	$3.114(2)\cdot 10^{-3}$	$1.799(7)\cdot 10^{-3}$	-42.2(2)
HZZZ	$2.693(2)\cdot 10^{-3}$	$1.766(6)\cdot 10^{-3}$	-34.4(2)
HHZZ	$9.828(7) \cdot 10^{-4}$	$6.24(2) \cdot 10^{-4}$	-36.5(2)
HHHZ	$1.568(1) \cdot 10^{-4}$	$1.165(4) \cdot 10^{-4}$	-25.7(2)

		MCSANO	Cee[3	7]						
\sqrt{s} [G	$ar{s} \; [ext{GeV}] \; ig \; \; \sigma_{ ext{LO}}^{ ext{tot}} \; [ext{fb}] \; ig \; \sigma_{ ext{NI}}^{ ext{tot}}$		$_{\rm O}^{\rm t}$ [fb]	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$		$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	δ_{EV}	v [%]	$\sigma^{ m sig}~(m LO/N$	
250		225.59(1)	206	.77(1)	225.60(1)		207.0(1)	-	-8.25	0.4/2.1
500		53.74(1)	62	.42(1)	53.74(3)		62.41(2)	+	16.14	0.2/0.3
1000		12.05(1)	14	.56(1)	12.0549(6)		14.57(1)) +20.84		0.5/0.5
	Pro	ocess		WHI $\sigma_{\rm LO}$	HIZARD+OpenLoops Lo [fb] σ_{NLO} [fb]				ee @)1TeV, N
	e^+	$e^- \rightarrow jj$	622.737(8)		639.39(5)					
	e^+	$+e^- \rightarrow jjj$		340.6(5)		317.8(5)				
	e^+	$e^- \rightarrow j j j j$	105.0(3)		10	4.2(4)				
	e^+	$e^- \rightarrow j j j j j j$		22.33	3(5) 24		24.57(7)			
	e^+	$e^+e^- \rightarrow jjjjjjj$		3.583	B(17)	4.4	16(4)			

J. R. Reuter, DESY

The "Exclusive" Frontier — fN(N)LO, Automation in MCs

μμ @ 3 TeV, NLO EW

		MCSANO	7]							
\sqrt{s} [G	$\sqrt{s} \; [ext{GeV}] \; ig \; \sigma_{ ext{LO}}^{ ext{tot}} \; [ext{fb}] \; ig \; \sigma_{ ext{NI}}^{ ext{tot}}$		$\sigma_{ m NL}^{ m tot}$	_O [fb]	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$		$\sigma_{ m NLO}^{ m tot}~[{ m fb}] \mid \delta_{ m E}$		v [%]	$\sigma^{ m sig}~(m LO/N$
250		225.59(1)	206	.77(1)	225.60	0(1)	207.0(1)	(1) -8		0.4/2.1
500		53.74(1)	62	.42(1)	53.74(3)		62.41(2)	+	16.14	0.2/0.3
1000		12.05(1)	14.56(1)		12.0549(6)		14.57(1)	4.57(1) +20.84		0.5/0.5
	Pro	ocess		$_{\sigma_{\rm LO}}^{\rm WHI}$	ZARD+C [fb])pen $\sigma_{\sf N}$	Loops LO [fb]		ee @)1TeV, N
	$\begin{array}{c} e^+e^- \rightarrow jj \\ e^+e^- \rightarrow jjj \\ e^+e^- \rightarrow jjjj \\ e^+e^- \rightarrow jjjjj \\ e^+e^- \rightarrow jjjjjj \end{array}$			622.7 340.6 105.6 22.33 3.583	737(8) 5(5) 5(3) 5(5) 5(17)	$632 \\ 312 \\ 104 \\ 242 \\ 4.42 $	$\begin{array}{c c} 9.39(5) \\ 7.8(5) \\ 4.2(4) \\ .57(7) \\ 6(4) \\ \end{array}$			arXiv

The "Exclusive" Frontier — fN(N)LO, Automation in MCs

μμ @ 3 TeV, NLO EW

		MCSANO	7]							
\sqrt{s} [G	$[\text{GeV}] \mid \sigma_{ ext{LO}}^{ ext{tot}} [ext{fb}] \mid \sigma_{ ext{NI}}^{ ext{tot}}$		$_{\rm O}^{\rm c}$ [fb]	$\sigma_{ m LO}^{ m tot}~[{ m fb}]$		$\sigma_{ m NLO}^{ m tot}~[{ m fb}]$	$ \delta_{\rm EV}$	v [%]	$\sigma^{ m sig}~(m LO/N$	
250		225.59(1)	206	.77(1)	225.60(1)		207.0(1)	-	-8.25	0.4/2.1
500		53.74(1)	62	.42(1)	53.74(3)		62.41(2)	+	16.14	0.2/0.3
1000		12.05(1)	14.56(1)		12.0549(6)		14.57(1) +		20.84	0.5/0.5
	Pro	ocess		$_{\sigma_{\rm LO}}^{\rm WHI}$	ZARD+OpenLoops [fb] σ_{NLO} [fb]				ee @	91TeV, N
	e^+ e^+ e^+ e^+	$e^- ightarrow jj$ $e^- ightarrow jjjj$ $e^- ightarrow jjjjj$ $e^- ightarrow jjjjj$	622.7 340.6 105.0 22.33 3.583	737(8) 5(5) 5(3) 3(5) 3(17)	$63 \\ 31 \\ 10 \\ 24 \\ 4.4$	$9.39(5) \\7.8(5) \\4.2(4) \\.57(7) \\46(4)$			arXiv	

Three major bottlenecks to go to NNLO

- Virtual integrals with many mass scales / off-shell legs
- Process-independent automated NNLO subtraction
- Negative weights in NLO simulations deteriorate at NNLO

J. R. Reuter, DESY

The "Exclusive" Frontier — fN(N)LO, Automation in MCs

μμ @ 3 TeV, NLO EW

Parton Showers, Matching, Merging, Hadronization

- 0
- 0
- 0
- 0

J. R. Reuter, DESY

Parton showers resums large logarithms; provide exclusive multi-jet events A lot of progress driven by LHC: final-state showers already accurate at NLL "Interleaved" showers: QCD and QED emissions $\alpha_s/\alpha \sim 15$ (sampled with veto algorithm) Matching: consistently combine fixed-order emissions with resummed shower emissions

Parton Showers, Matching, Merging, Hadronization

J. R. Reuter, DESY

Exclusive Photon Simulation

Exclusive photon distribution important for detector optimization / mono-photon searches etc. Different algorithms: QED shower, soft/eikonal resummation (YFS), recursive algorithms

J. R. Reuter, DESY

Initial State Radiation – Lepton PDFs

J. R. Reuter, DESY

□ For QCD: non-perturbative bound-state PDFs need to be fitted from data **G** For QED / EW: calculable from first principle (collinear factorization)

J. R. Reuter, DESY

□ For QCD: non-perturbative bound-state PDFs need to be fitted from data **□** For QED / EW: calculable from first principle (collinear factorization)

J. R. Reuter, DESY

DESY-FH Future Collider + Scientific Computing Workshop, 1.7.2024

□ For QCD: non-perturbative bound-state PDFs need to be fitted from data **□** For QED / EW: calculable from first principle (collinear factorization)

Integrable power-like singularity 1/(1-z) for $z \rightarrow 1$

J. R. Reuter, DESY

NLL, $\mu_0 = m_e$, $\mu = 100 \text{ GeV}$

DESY-FH Future Collider + Scientific Computing Workshop, 1.7.2024

□ For QCD: non-perturbative bound-state PDFs need to be fitted from data **□** For QED / EW: calculable from first principle (collinear factorization)

Integrable power-like singularity 1/(1-z) for $z \rightarrow 1$

QED PDFs = electron/ISR structure functions, ISR structure functions

- Gives most precise normalization of total cross section
- Very intricate numerical behavior at peak, especially at NLO
- "Photon PDF" (a.k.a. EPA, Weizsäcker-Williams) Γ_{ν} , peaked at small z

J. R. Reuter, DESY

NLL, $\mu_0 = m_e$, $\mu = 100 \text{ GeV}$

DESY-FH Future Collider + Scientific Computing Workshop, 1.7.2024

- **□** Fully inclusive in collinear/forward/beam direction
- At very (, very) high energies lepton colliders become $\gamma\gamma/VV$ colliders (like LHC is gg)
- Work in progress in Krakow, DESY, Pittsburgh
- □ Has to be accompanied by EW fragmentation functions (event selection!)

Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844; Garosi/Marzocca/Trifinopoulos, 2303.16941

- **G** Fully inclusive in collinear/forward/beam direction
- At very (, very) high energies lepton colliders become $\gamma\gamma/VV$ colliders (like LHC is gg)
- Work in progress in Krakow, DESY, Pittsburgh
- Has to be accompanied by EW fragmentation functions (event selection!)

NLL, $\mu_0 = m_e$, $\mu = 100 \text{ GeV}$

J. R. Reuter, DESY

Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844; Garosi/Marzocca/Trifinopoulos, 2303.16941

- **G** Fully inclusive in collinear/forward/beam direction
- At very (, very) high energies lepton colliders become $\gamma\gamma/VV$ colliders (like LHC is gg)
- Work in progress in Krakow, DESY, Pittsburgh
- □ Has to be accompanied by EW fragmentation functions (event selection!)

J. R. Reuter, DESY

Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844; Garosi/Marzocca/Trifinopoulos, 2303.16941

- Collinear factorization not in QED, but in full SM Han/Ma/Xie, 2007.14300, 2103.09844; Garosi/Marzocca/Trifinopoulos, 2303.16941
- **G** Fully inclusive in collinear/forward/beam direction
- At very (, very) high energies lepton colliders become $\gamma\gamma/VV$ colliders (like LHC is gg)
- Work in progress in Krakow, DESY, Pittsburgh
- □ Has to be accompanied by EW fragmentation functions (event selection!)

J. R. Reuter, DESY

Lepton vs. Hadron Colliders

J. R. Reuter, DESY

Lepton vs. Hadron Colliders

J. R. Reuter, DESY

Thresholds and "special processes"

- Luminometry: Special treatment for Bhabha scattering ($\ell^+\ell^- \to \ell^+\ell^-$) and diphotons ($\ell^+\ell^- \to \gamma\gamma$) [$10^{-4} 10^{-5}$ precision] t and W mass measurements with precisions at $10^{-4} - 10^{-5}$ precision
- Exclusive Monte Carlo need to take into account QED and QCD threshold effects

J. R. Reuter, DESY

Beyond SM (BSM) Modelling in Simulation

J. R. Reuter, DESY

BSM Models: UFO magic avoids hard-coding

- Old school: hard-coding by hand

MuC example for SMEFT/HEFT UFO, from: T. Han et al. arXiv:2108.05362

J. R. Reuter, DESY

Challenges of Monte Carlo Event Generators

J. R. Reuter, DESY

Challenges of Monte Carlo Event Generators

J. R. Reuter, DESY

- Typical MC generator $\gtrsim 0.5$ M lines of code
- Many physics parts: necessity of a team/collaboration
- No tool implements all physics (and probably never will)
- Modularity and interchangeability is a must
- e.g. typically interfaces to ca. 15 external libraries
- Unit testing & Continuous integration

Challenges of Monte Carlo Event Generators

J. R. Reuter, DESY

- Typical MC generator $\gtrsim 0.5$ M lines of code
- Many physics parts: necessity of a team/collaboration
- No tool implements all physics (and probably never will)
- Modularity and interchangeability is a must
- e.g. typically interfaces to ca. 15 external libraries
- Unit testing & Continuous integration

- 3—5 major MC event generators
- Most of these MC members will retire around 2040-45
- Need for ca. MC 8–10 staff positions world-wide in the next ca. 20 years
- Already many example of "zombie codes" in experiments

Conclusions & Outlook

- Monte-Carlo generators almighty workhorses of particle physics!! 0
- MCs implement all necessary SM and BSM physics 9
- Tedious work for MC collaboration members 9
- Tremendous progress on QCD corrections driven by 15 years of LHC running 6
- NLO QCD+EW for SM and NLO QCD BSM (mostly) under control, attempts for NNLO automation 9
- Precision in initial-state QED radiation resummation and exclusive photons crucial 9
- Parton Showers for QCD and QED radiation much matured (now up to NLL for FSR) 6
- Hadronization will be probed with much enhanced precision at future e^+e^- collider 6
- Computing bottlenecks: parallelization & optimization of phase space integration, negative weights 6
- Quite extensive activities at DESY: many opportunities to participate 0

Event generators: Accuracy vs. Precision

J. R. Reuter, DESY

Accuracy and Precision

Accurate **Not Precise**

sciencenotes.org

J. R. Reuter, DESY

J. R. Reuter, DESY

Quark and gluon jets hadronize at low energy scales (fragmentation)

Non-perturbative physics: has to be extracted from experiment [mainly $e^+e^- \rightarrow$ hadrons, DIS, LHC]

Old models [1970s]: flux tubes, independent fragmentation [Feynman/Field, 1970; Isajet: Paige et al.]

J. R. Reuter, DESY

- Quark and gluon jets hadronize at low energy scales (fragmentation)
- Non-perturbative physics: has to be extracted from experiment [mainly $e^+e^- \rightarrow$ hadrons, DIS, LHC]
- Old models [1970s]: flux tubes, independent fragmentation [Feynman/Field, 1970; Isajet: Paige et al.]

Lund string fragmentation model [Pythia]

- based on old string model of strong interactions
- Strong physical motivation, but: invented without parton shower in mind
- Universal description of data (ee fit \rightarrow hadrons)
- \bigcirc Plethora of parameters: ~ O(1) per hadron
- Baryon production difficult [string junctions, popcorn]

- Quark and gluon jets hadronize at low energy scales (fragmentation)
- Non-perturbative physics: has to be extracted from experiment [mainly $e^+e^- \rightarrow$ hadrons, DIS, LHC]
- Old models [1970s]: flux tubes, independent fragmentation [Feynman/Field, 1970; Isajet: Paige et al.]

Lund string fragmentation model [Pythia]

- based on old string model of strong interactions
- Strong physical motivation, but: invented without parton shower in mind
- Universal description of data (ee fit \rightarrow hadrons)
- \bigcirc Plethora of parameters: ~ O(1) per hadron
- Baryon production difficult [string junctions, popcorn]

Cluster fragmentation model [Herwig]

- Parton shower orders partons in color space
- Large N_C limit: planar graphs dominate
- Cluster: continuum of high-mass resonances, decay to hadrons
- No spin info, just plain phase space
- Cluster spectrum determined by PS (perturbation theory)

- Quark and gluon jets hadronize at low energy scales (fragmentation)
- Non-perturbative physics: has to be extracted from experiment [mainly $e^+e^- \rightarrow$ hadrons, DIS, LHC]
- Old models [1970s]: flux tubes, independent fragmentation [Feynman/Field, 1970; Isajet: Paige et al.]

Lund string fragmentation model [Pythia]

- based on old string model of strong interactions
- Strong physical motivation, but: invented without parton shower in mind-
- Universal description of data (ee fit \rightarrow hadrons)
- \bigcirc Plethora of parameters: ~ O(1) per hadron
- Baryon production difficult [string junctions, popcor

Cluster fragmentation mou

- Parton shower orders partons in color space
- Large N_C limit: planar graphs dominate
- Cluster: continuum of high-mass resonances, decay to hadrons
- No spin info, just plain phase space
- Cluster spectrum determined by PS (perturbation theory)

- Parton shower orders partons in color space
- Large N_C limit: planar graphs dominate

A hadronic decay chain of typical complexity:

 $B^{*0} \rightarrow \gamma B^0$

J. R. Reuter, DESY

Radiative electromagnetic decay

A hadronic decay chain of typical complexity:

$$B^{*0} \to \gamma B^0$$
$$\hookrightarrow \overline{B}^0$$

J. R. Reuter, DESY

Radiative electromagnetic decay Weak mixing

A hadronic decay chain of typical complexity:

 $B^{*0}
ightarrow \gamma B^0$ $\hookrightarrow \overline{B}^0$ $\hookrightarrow e^-\overline{\nu}_e D^{*+}$

J. R. Reuter, DESY

Radiative electromagnetic decay Weak mixing Weak decay

A hadronic decay chain of typical complexity:

J. R. Reuter, DESY

Radiative electromagnetic decay Weak mixing Weak decay Strong decay

A hadronic decay chain of typical complexity:

J. R. Reuter, DESY

Radiative electromagnetic decay Weak mixing Weak decay Strong decay Weak decay, p mass smeared

A hadronic decay chain of typical complexity:

J. R. Reuter, DESY

Radiative electromagnetic decay Weak mixing Weak decay Strong decay Weak decay, p mass smeared ρ⁺ polarized, angular correlations

A hadronic decay chain of typical complexity:

 $B^{*0} \to \gamma B^0$ $\hookrightarrow \overline{B}^0$ $\hookrightarrow e^- \overline{\nu}_e D^{*+}$ $\hookrightarrow \pi^+ D^0$ $\hookrightarrow K^- \rho^+$ $\hookrightarrow \pi^+ \pi^0$

J. R. Reuter, DESY

Radiative electromagnetic decay Weak mixing Weak decay Strong decay Weak decay, p mass smeared p⁺ polarized, angular correlations Dalitz decay, *m*_{ee} peaked

 $\hookrightarrow e^+ e^- \gamma$

A hadronic decay chain of typical complexity:

 $\hookrightarrow \overline{B}^0$

 $\hookrightarrow e^- \overline{\nu}_e D^{*+}$

 $\hookrightarrow \pi^+ D^0$

 $\hookrightarrow K^- \rho^+$

 $\hookrightarrow \pi^+ \pi^0$

 $B^{*0} \to \gamma B^0$

Final-state hadronic QED radiation for shower shapes and correct distributions

20 pb⁻¹ (13 TeV) 10 Events / GeV **Trigger paths** CMS 10^{7} Preliminary **J/**ψ 4**0**⁶ ow mass double muon + tracl 10⁵ Bs double muon inclusive **10**⁴ 10³ 10² 10 ¹⁰ $\mu^+\mu^-$ invariant mass [GeV]

J. R. Reuter, DESY

Radiative electromagnetic decay Weak mixing Weak decay Strong decay Weak decay, p mass smeared ρ⁺ polarized, angular correlations Dalitz decay, *m*_{ee} peaked

 $\hookrightarrow e^+ e^- \gamma$

 $\hookrightarrow e^+e^-\gamma$

A hadronic decay chain of typical complexity:

 $\hookrightarrow \overline{B}^0$

 $\hookrightarrow e^- \overline{\nu}_e D^{*+}$

 $\hookrightarrow \pi^+ D^0$

 $\hookrightarrow K^- \rho^+$

 $\hookrightarrow \pi^+ \pi^0$

 $B^{*0} \to \gamma B^0$

Final-state hadronic QED radiation for shower shapes and correct distributions

20 pb⁻¹ (13 TeV) 10[°] Events / GeV **Trigger paths** CMS 10^{7} Preliminary **J/**ψ 0^c w mass double muon + tracl 10⁵ **B**_s double muon inclusive 10⁴ 10³ 10² 10 $^{10}_{\mu^+\mu^-}$ invariant mass [GeV]

J. R. Reuter, DESY

PDG: 100s of particles, 1000s of decay modes, form factors, peak shapes, special cases, "PDG unitarity violation"

Radiative electromagnetic decay Weak mixing Weak decay Strong decay Weak decay, p mass smeared ρ^+ polarized, angular correlations Dalitz decay, *m*_{ee} peaked

Example: Search for low-mass sbottoms at a 800 GeV e⁺e⁻ collider

J. R. Reuter, DESY

Example: Search for low-mass sbottoms at a 800 GeV e⁺e⁻ collider

J. R. Reuter, DESY

Example: Search for low-mass sbottoms at a 800 GeV e⁺e⁻ collider

J. R. Reuter, DESY

- **G** Fully inclusive in collinear/forward/beam direction
- Exclusive photons contained in NLL + NLO calculation
- Approximations exist for photons with pT for LL PDFs

Example: Search for low-mass sbottoms at a 800 GeV e⁺e⁻ collider

J. R. Reuter, DESY

800

Photons from lepton PDF collinear & non-observable **G** Fully inclusive in collinear/forward/beam direction Exclusive photons contained in NLL + NLO calculation Approximations exist for photons with pT for LL PDFs

Also soft factorization / exponentiation

Yennie/Frautschi/Suura, 1961; YFS:

Presumably best description for thresholds: soft effects

Collinear corrections can be added in principle

$$d\sigma = \sum_{n_{\gamma}}^{\infty} \frac{\exp[Y_{res.}]}{n_{\gamma}!} \prod_{j=1}^{n_{\gamma}} \left[d\text{LIPS}_{j}^{\gamma} S_{res.}(k_{j}) \right]$$
$$[\sigma_{0} + \text{correction}]$$

