

Belle II detector alignment with Millepede II

Tadeáš Bilka^{1*}

¹DESY, Hamburg

for the Belle II Collaboration

* tadeas.bilka@desy.de

- Upgrade of KEKB & Belle, taking physics data since 2019
- Worlds' highest luminosity electron-positron collider (KEK, Tsukuba, Japan) at Upsilon(4S) resonance → B physics, D physics, tau physics ...

Past, Present, and Future

Systematic errors will start to dominate measurement precisions for many analyses

Precision @ Belle II

Just two examples...

Alignment precision at level of micrometers needed

> Advanced track-based (time-dependent) alignment

Belle II Alignment Parameters: Local Alignment

Belle II Alignment Parameters: Global Alignment

Relative positions of sub-detectors and larger structures*

Problem: Correlations with local alignment and correlations of different sub-detectors!

Alignment of all degrees of freedom should be done simultaneously

*Redundant DoFs removed by linear equality constraints

Alignment Algorithm: Millepede II

Minimize over **all** parameters:

Challenge for most alignment problems are **weak modes** – linear combinations of parameters which leave Chi² (almost) unchanged \rightarrow could bias track parameters and physics

New: LAPACK for solution

Method	Factorisation	Calc. inverse	QtAQ, QA-1Qt	Total time	
Decomposition	331	-	no A ⁻¹ 9.7	361	
Inversion	-	852	20.0	898	
MKL, packed	6.3	1338	18.4	1377	
MKL, unpacked	4.2	19.8	2.1	40	
OpenBlas, unpack.	4.8	10.0	15.9	45	

Time in minutes. Table from C. Kleinwort

With recent speed-ups, an exact – solution for 60k parameters can be obtained in about 30 min*!

*Using 10 cores @ Xeon(R) CPU E5-2640 v3 @ 2.60GHz. 20GB of memory required.

Hadronic events

Di-muon events (with IP constraint)

+ off-IP events for data

Rich topology of data samples helps to reduce weak modes

Recorded during collisions

Cosmic events

(merged tracks)

New PXD & New Alignment Challenge

Real shape of the PXD (sensitive areas)

as determined by the alignment

Rele I New PXD & New Alignment Challenge

New PXD & New Alignment Challenge

- Observed (also) very fast bowing-like deformations correlated to beampipe temperature ← depends on beam currents
- Would need much more data for alignment

SVD track

Λz

- Precise alignment required for precision physics
- Belle II alignment determines about 60k parameters for pixel and strip detectors and the drift chamber promptly after data-taking
 - CDC layers and PXD&SVD hafl-shells and individual PXD sensors are aligned about every 50k di-muon events (+some cosmics) → once in several hours (depending on lumi)
- New challenges with new PXD
 - Need much "faster" alignment
 - But not all data available at the calibration site
 - Alignment already takes 1/4 to 1/2 a day (multiple passes over data needed)
 - Possible solutions
 - Much more data for alignment \rightarrow expensive
 - Alignment on GRID? (Need high-performance high-memory machine processing data after each collection step)
 - "Parametrize" deformations with less degrees of freedom \rightarrow maybe not feasible (work in progress)
 - Ignore (flag bad quality vertex data ...)

Thank you for your attention!

BACKUP

$\sum_{\text{Belle II}} \text{KEKB} \rightarrow \text{SuperKEKB}$

Belle II Calibration and Data Production

- Physics data calibrated in prompt calibration loop every bucket
 - Done at BNL
 - About a month after data
- Recalibration
 - KEKCC or NAF
 - After a year or two, all data when needed
 - Fix issues, improve...

Bucket = several weeks of datataking (scaled to about 10/fb) Alignment: aim to provide the best possible performance for physics already in prompt calibration

Reducing weak modes with rich track topology Belle II

Typical Weak Modes in Alignment for Detectors with B-Field & Cylindrical Symmetry

	ΔR	Δφ	ΔΖ
	Radial Expansion (distance scale)	Curl (Charge asymmetry)	Telescope (COM boost)
R		í,	
	Elliptical (vertex mass)	Clamshell (vertex displacement)	Skew (COM energy)
φ			
	Bowing (COM energy)	Twist (CP violation)	Z expansion (distance scale)
z			

 \rightarrow For tracks from IP, such distortions leave Chi2 unchanged, but change parameters of the tracks \rightarrow bias in track parameters: weak modes are the biggest **challenge** in track based alignment

→ Several ways to reduce them: many track **topologies** (cosmics with/without magnetic field, tracks not from IP, vertex/mass constrained decays ...), detector **construction**: overlaps, survey or external **measurements** ...

General Broken Lines

- > Track model with proper describtion of multiple scattering
- Track constructed from measurement and scattering points kink interpolation
- PHYSICS AT THE TERA SCALE
- \rightarrow Integrated into GENFIT2 package

 \rightarrow Profits from generic treatment of many different measurement types \rightarrow Advanced treatment of material for multiple scattering estimation (thick scatterers)

- > User has to provide at each point:
 - = Residuals, measurement errors, projections from track coords. \rightarrow measurement coords.
 - Jacobians of propagation between adjacent points
 - Scattering errors at scatterers; derivatives of residuals w.r.t. align. params (for MP2)
- > Track described by change of curvature and kinks at scattering points

