Solving the CMS High Granularity Calorimeter's Data Processing Challenges with Heterogeneous Computing

FH Scientific Computing Platform DESY, 1/07/2024

Juliette Alimena, Freya Blekman, Jeremi Niedziela, Lovisa Rygaard

High Granularity Calorimeter

What's HGCal?

- new detector for CMS Upgrade
 - → starting in Run 4 (≈2029)
- replacing ECAL & HCAL

High Granularity Calorimeter

What's HGCal?

- new detector for CMS Upgrade
 - \rightarrow starting in Run 4 (\approx 2029)
- replacing ECAL & HCAL
- a tracking calorimeter
 - **→ 47 layers**, 1.5 < η < 3.0
- CE-E (EM part): silicon sensors
 - → 6M channels
- CE-H (Hadronic part): silicon + scintillator tiles

HGCal Challenges

Challenges

- 6.5M channels \rightarrow HGCal event size $\approx 40\%$ of the total CMS size
- need to **decode data fast** to fit the strict High Level Trigger (HLT) time requirements

HGCal Challenges

Challenges

- 6.5M channels \rightarrow HGCal event size $\approx 40\%$ of the total CMS size
- need to **decode data fast** to fit the strict High Level Trigger (HLT) time requirements

Reconstruction flow

- the chain involves:
 - unpacking+mapping
 - Data Quality Monitoring with calibration constants calculation
 - RecHit production and **calibration**
 - then passing on to the reconstruction...
- **DESY** is involved in multiple steps in this process

Electronics Mapping

Mapping

- assign **spatial (geometric) locations** to cells/ tiles based on their electronic identifiers
- essential step in the RAW data unpacking process

Electronics Mapping

Mapping

- assign spatial (geometric) locations to cells/ tiles based on their electronic identifiers
- essential step in the RAW data unpacking process
- also needed in the **opposite direction** for simulation

Electronics Mapping

Mapping

- assign spatial (geometric) locations to cells/ tiles based on their electronic identifiers
- essential step in the RAW data unpacking process
- also needed in the **opposite direction** for simulation
- many tricky **"special" cases**:
 - differences between silicon and scintillator parts
 - differences within each part
 - partial modules
 - calibration/trigger channels
 - . . .

Hits Calibration

Calibration

For each hit:

- decide on using ADC or TOT
- convert to raw charge
 - non-linear effects to be added in the future

$$q = \begin{cases} LSB_{ADC} \cdot (ADC + 1/2), & \text{if } T_c T_p = b'00 \\ LSB_{TOT} \cdot (TOT + 1/2) + TOT_0, & \text{if } T_c T_p = b'11 \\ 0, & otherwise \end{cases}$$

Hits Calibration

Calibration

For each hit:

- decide on using ADC or TOT
- convert to **raw charge**
 - non-linear effects to be added in the future

• apply corrections:

- channel's pedestal
- Common Mode (affects the whole module)
- CM pedestal
- other correction factors
- previous bunch crossing corrections (q-1)

Hits Calibration

Calibration

For each hit:

- decide on using ADC or TOT
- convert to **raw charge**
 - non-linear effects to be added in the future

apply corrections:

- channel's pedestal
- Common Mode (affects the whole module)
- CM pedestal
- other correction factors
- previous bunch crossing corrections (q-1)
- convert **charge to energy**:
 - scale q₀ to N_{MIP}
 - correct for irradiation (per channel)
 - scale to units of energy

Heterogenous Computing

Heterogeneous Computing

- using more than one type of processing unit, e.g. CPU+GPU
- especially interesting for us GPUs:
 - very large **parallelization** \rightarrow perfect for the **same operations** applied to **millions of hits**

GPU

(Hundreds of cores)

CPU

(Multiple cores)

Core 1	Core 2
Core 3	Core 4

Heterogenous Computing

Heterogeneous Computing

- using more than one type of processing unit, e.g. CPU+GPU
- especially interesting for us **GPUs**:
 - very large parallelization \rightarrow perfect for the same operations applied to **millions of hits**

Alpaka — Abstraction Library for Parallel Kernel Acceleratio

- portable, performant code across various types of accelerators:
 - multi-core CPUs
 - ► GPUs
 - std::thread
 - and others...
- **back-ends** for:
 - CUDA
 - OpenMP
 - Boost.Fiber
 - and many others
- **transparent** for the coder (all programmed in the same way)

algaka

GPU

(Hundreds of cores)

CPU

(Multiple cores)

r	٦		

Core 1	Core 2
Core 3	Core 4

Calibration speedup

• to asses performance

→ take simulated events and **clone the hits** in them many many times

Calibration speedup

- to asses performance
 - \rightarrow take simulated events and **clone the hits** in them many many times
- number of threads/blocks optimized separately for CPU and GPU

1/07/2024

7

- CPU and GPU
- 10x speedup!

1/07/2024

Mapping speedup

- mapping implemented using alpaka data structures storing:
 - electronics information in Electronics IDs
 - geometrical information in Silicon or Scintillator Detector IDs

Raw value	Method	Number of channels	Time to retrieve
Electronics ID	module eleid + cell eleid	6 000 000	0.7 µs
Silicon Detector ID	module detid + cell detid	6 000 000	0.3 µs
Scintillator Detector ID	getSiPMDetectorID(zside, plane, module u, celltype, cell u, celltype	390 000	2ms

Mapping speedup

- mapping implemented using **alpaka data structures** storing:
 - electronics information in Electronics IDs
 - geometrical information in Silicon or Scintillator Detector IDs
- calculations of IDs during setup can be run on GPUs
- For 390k Scintillator channels: 10x speedup
- For 6M Silicon channels: 10x speedup

Raw value	Method	Number of channels	Time to retrieve
Electronics ID	module eleid + cell eleid	6 000 000	0.7 µs
Silicon Detector ID	module detid + cell detid	6 000 000	0.3 µs
Scintillator Detector ID	getSiPMDetectorID(zside, plane, module u, celltype, cell u, cell v)	390 000	2ms

number of channels

Summary

Key points

- HGCal calibration and reconstruction are challenging
- Heterogenous Computing helps to address these challenges
- Alpaka already provides **10x speedup of** calibration
- 10x speedup in mapping setup as a byproduct of making it alpaka-ready

Summary

Key points

- HGCal calibration and reconstruction are challenging
- Heterogenous Computing helps to address these challenges
- Alpaka already provides 10x speedup of calibration
- **10x speedup in mapping** setup as a byproduct of making it alpaka-ready

Future Prospects

- started work on DQM
- test calibration in a more realistic setting (test beam data)
- make sure we meet **timing requirements**
- adjust calibration for the SiPM part of HGCal
- introduce Alpaka in other parts of the reconstruction chain

