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Electron beam

Laser pulse

L U X E :  L A S E R  U N D  X F E L  E X P E R I M E N T

• Experiment in planning at DESY and European XFEL to study collisions of 
high-energy XFEL electron beam and high-power laser.
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Field intensity parameter 
(charge-field coupling) 

ξ =
me

ωL

EL

Ecr

All-order process, i.e. non-
perturbative for  ξ ∼ O(1)

P(nγL → γ) ∝ αξ2n

Multiple photons 
=non-linear
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Compton-photon

Non-linear Compton scattering:  
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Non-linear Breit Wheeler:  
 γC +n′ γL → e+ + e−
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M E A S U R E M E N T

• LUXE goal: precision measurements  
in a transition from perturbative to  
non-perturbative QED.
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Dipole magnet 1
Laser pulse

Compton γ’s

e−e+
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γ-profiler

e−
C

Pixel tracker

Calorimeter

Dipole for charge and 
momentum separation

Silicon pixel tracker with 4 
layers using ALPIDE sensors.

• For precise positron rate measurement, 
reconstruct particle path with tracking.
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L U X E  T R A C K I N G  C H A L L E N G E

• Tracking at LUXE becomes challenging due to combinatorics at high track 
multiplicities. 

• At phase-0 (40 TW laser), occupancies at  
the pixel detector reach 100 particles/mm2. 

• Orders of magnitudes higher than other  
planned HEP experiments, e.g. HL-LHC.  

• Quantum computing may offer an advantage.  
In our paper (arXiv:2304.01690), we study  
various tracking methods using quantum and classical algorithms.
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https://arxiv.org/abs/2304.01690
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T R A C K I N G  U S I N G  Q U A N T U M  C O M P U T I N G
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Example triplets 
passing pre-selection

Step 1: form triplets

e+

IP
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Example triplets 
passing pre-selection

Two selected triplets 
form a track candidate

Step 1: form triplets Step 2: find the best sets of triplets

e+

IP

Find Ti, Tj that minimises QUBO!

Compatibility bij between two triplets  

Quadratic 
Unconstrained 
Binary 
Optimisation

Weighting triplet 
Ti with quality ai

O(a, b, T) =
N

∑
i=1

aiTi +
N

∑
i

N

∑
j<i

bijTiTj Ti, Tj ∈ {0,1}
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O V E R V I E W  O F  M E T H O D S

• Variational Quantum Eigensolver (VQE) for minimising QUBO. 

• Exact solution with matrix diagonalisation as benchmark. 

• Quantum Graph Neural Network (QGNN) 
• Doublet classification. Graph constructed from doublets. 

• Hybrid quantum-classical model with 10  
hidden features (qubits). 

• Combinatorial Kalman Filter (CKF) 
• CKF in a common tracking software (ACTS) used. 

• Triplets from first three layers are used as seeds to steer the tracking.
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R E S U LT S
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Increasing complexities/#particles
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T E S T  O N  R E A L  Q U A N T U M  H A R D W A R E

• Results shown so far obtained using classical simulations of quantum hardware 
without noise. 

• To study how well VQE works, we study   
an example with 7 triplets (matching  
the #qubits of the device tested). 

• Compare results from running on  
quantum hardware (IBM Nairobi)  
to ideal simulation as well as a  
simulated device with noise.

8
Correct solution
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Q U A N T U M  A N N E A L I N G

• IBM offers universal gate-based quantum computers. Other types of Quantum 
computers exist. 

• Quantum annealers specialise in solving  
optimisation problems. 

• Advantage: > 5000 qubits in D-Wave.

9

image source 

https://www.dwavesys.com
https://quantumsfer.com/quantum-annealing/


Yee Chinn Yap

A N N E A L I N G

• Simulated annealing 

• No partitioning 

• Real D-wave annealer at Forschungszentrum  
Jülich 

• QUBO examples with sizes 10 — 136.  

• Ground state found for smaller QUBO sizes. 
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O U T L O O K

• LUXE will study strong-field QED in an unprecedented regime using high-intensity 
optical laser pulse and 16.5 GeV XFEL electron beam. 

• Demonstrated the feasibility of tracking using a quantum approach. 

• Achieved similar performance as classical tracking. 

• Outlook: 

• Detailed QUBO size scaling studies. 

• Use Machine Learning to learn a better QUBO encoding.  

• Extension to 4D tracking (including timing) for muon collider, see D. Spataro’s talk 
tomorrow.
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Q U B O

• The QUBO is mapped onto a quantum computer (here: simulator). 

• The ground state is found using Variational Quantum  
Eigensolver (VQE), a hybrid quantum-classical  
algorithm. 

• Nakanishi-Fujii-Todo (NFT) optimiser used. 

• QUBO is partitioned into sub-QUBOs of the  
size of the quantum device (7 qubits assumed)  
to be solved iteratively. 

• Exact solution using matrix diagonalisation used as benchmark.  

• Another method of finding the ground state is with quantum annealing. 
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P E R F O R M A N C E

• Apply final track selection and compare performance of these tracking 
methods for ξ = 3 – 7 in LUXE phase-0 e-laser interactions, where the number 
of positrons are between 140 and 67,000. 

• Two metrics:
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*A track is considered matched if the majority of its hits belong to the same particle (i.e. at least 3 out of 4 hits).

Efficiency =
Nmatched*

tracks

Ngenerated
tracks

Fake rate =
Nfake

tracks

Nreconstructed
tracks
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P E R F O R M A N C E  V S  E N E R G Y
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GNN results not available
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W O R K F L O W
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PTARMIGAN arXiv:2108.10883 

Custom fast tracker simulation 
with simplified detector setup

https://arxiv.org/pdf/2108.10883.pdf
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F I N A L  T R A C K  S E L E C T I O N

• Tracks are required to have 4 hits.  

• Found either directly with classical CKF tracking or by  
combining selected doublets/triplets into quadruplets  
in the GNN/QUBO approaches.  

• Tracks are fitted and ambiguity solving applied to remove  
worse quality tracks with shared hits from the track collection. 

• No track is allowed to have more than 1 shared hit.
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Track candidate to be 
removed during 

ambiguity solving

Retained track 
candidates
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T R A C K  P O S T  P R O C E S S I N G
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G N N

• Circuit 10 with two layers and 10 qubits used. 

• EdgeNet and the NodeNet are applied alternately four times to allow the node features 
to be updated using farther nodes, as determined in a scan of the optimal model 
parameters.
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G N N

22



Yee Chinn Yap

G N N
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Image from http://openqemist.1qbit.com/docs/vqe_microsoft_qsharp.html 

http://openqemist.1qbit.com/docs/vqe_microsoft_qsharp.html
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M E T H O D  C O M PA R I S O N
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Methods GNN QUBO CKF

Starting point Doublet Triplet Seed

Local/global Global Global Local

Scope Pattern recognition only Pattern recognition only 
Pattern recognition + 

track fitting

Classical 
benchmark

Classical GNN Matrix diagonalisation -


