4D track reconstruction with quantum algorithms

Federico Meloni¹, **David Spataro**^{1,2}, Yee Chinn Yap¹

¹ Deutsches Elektronen Synchrotron DESY

² Albert-Ludwigs-Universität Freiburg

FH SciComp Workshop, Hamburg 02/07/2024

HELMHOLTZ

Motivation

Track reconstruction:

- Fundamental for extracting meaningful information about particle collisions
- As a combinatorial task, it can be computationally expensive
- Quantum computing algorithms might yield an advantage over classical algorithms

This talk: 4D quantum algorithm for tracking in future collider facilities (muon collider as an example)

Muon Collider

- Higgs-factory colliding µ⁺µ⁻ beams with a center-of-mass energy of 10 TeV
- Direct searches, high rate measurements, high-energy probes, muon physics

Challenges: Find single signal, reject combinatorial fake tracks originating from **B**eam-Induced-**B**ackground (BIB)

Time information as a crucial part to reduce BIB \rightarrow available in the complete tracker region

Muon Collider detector

Time resolution:

- VXD: 30 ps
- ITracker: 60 ps

Spatial resolution:

- VXD: 5 x 5 μm²
- ITracker: 7 x 90 µm²

Procedure: Connect hits from different detector layers and fit the space points to reconstruct particle tracks

• **Doublets** are created by combining hits from successive layers

- **Doublets** are created by combining hits from successive layers
- Triplets are created by combining doublets

- **Doublets** are created by combining hits from successive layers
- **Triplets** are created by combining doublets
- **Relations** of triplets as key feature

Goal: Identify triplets stemming from a single particle ("matched") and combine them to tracks

QUBO <u>Quadratic Unconstrained Binary Optimisation</u>

• **T**_i are binary representations of triplets

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \qquad (\text{QUBO})$$

QUBO Quadratic Unconstrained Binary Optimisation

- **T**_i are binary representations of triplets
- Description of a system using two types of parameters:
 - Conflicts: $b_{ij} > 0$
 - Connections: b_{ij} < 0
 - Individual term: a_i

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \qquad (\text{QUBO})$$

QUBO Quadratic Unconstrained Binary Optimisation

• **T**_i are binary representations of triplets

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \qquad (\text{QUBO})$$

- Description of a system using two types of parameters:
 - Conflicts: b_{ij} > 0
 - Connections: b_{ii} < 0
 - Individual term: a_i

New: Combining spatial and temporal information in a_i and $b_{ij} \rightarrow$ "4D parameters"

Goal: Minimising the QUBO cost function

(Hamiltonian) of the system

QUBO <u>Quadratic Unconstrained Binary Optimisation</u>

Minimise QUBO cost function

- Ground state \rightarrow best set of triplets to keep
- $\mathbf{v}_{\mathbf{binary}}$: $[\mathbf{T}_1, \mathbf{T}_2, \mathbf{T}_3, \dots, \mathbf{T}_N] \rightarrow [0, 1, 1, \dots, 0]$
- Large QUBOs need to be split into sub-QUBOs

 \rightarrow sequentially minimised and combined to global solution

Computation:

- Matrix diagonalisation (analytic solution)
- Hybrid quantum-classical algorithm (VQE)

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i$$
 (QUB)

()

VQE Variational Quantum Eigensolver

Source: edited from http://opengemist.1gbit.com/

VQE Variational Quantum Eigensolver

Track reconstruction study

Physics case study

• Search for long-lived charged-particle tracks, including slow and heavy particles (BSM candidate?)

Setup:

- Probe signal particle with m = 1.1TeV, $\beta \in [0.2, 0.7]$
- Preselection applied to doublets and triplets with > 99% selection efficiency
- Track selection:
 - At least **6** hits,
 - **Matched** if majority of hits from signal

Fake tracks / background

- Fake tracks per event with one signal track
- 4D parameters reduce fake tracks greatly
- Future: Apply χ^2 cut to reduce fake rate further

Summary and outlook

- Presented an application of a 4D quantum algorithm which can be applied in principle to any future collider facility (not restricted to a muon collider!)
- 4D parameters help to reduce fake tracks, influence on reconstruction efficiency will be further investigated
- Optimisation of 4D parameter composition necessary

Thank You!

VQE result example

- Calculations on a quantum device are noisy:
 →Error mitigation and error correction
- 10 shots (number of circuit evaluations) sufficient for 99% success rate

