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Quantum Computing
Introduction

• Use case: Particle Physics Calorimeter Simulations

• Calorimeter detectors responsible for measuring
particle energies in physics

• Current Geant4 Monte Carlo simulations are
computationally demanding

→ Searching for alternatives

• Previously: Geant4 Monte Carlo Simulations

• Now:           Deep Learning

• → Developed a Deep Learning model for calorimeter 
simulations which requires fewer computing 
resources (DLGAN)

• Next:          Try Quantum Computing

?

Geant4

Deep Learning         

150 000x speed up

 

Quantum Computing
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Quantum Computing
What is Quantum Computing

Initial state Evolved state

Quantum Computing allows for the 

accurate evolution of a quantum 

state 0 ⊗𝑁 into another |𝜓⟩

• High-dimensional search space

• Fewer parameters needed

• Faster learning
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QAG Model
Introduction

• In this study: A new quantum generative model: 

Quantum Angle Generator (QAG)

• Why a new model?

• Current quantum models do not satisfy our 

requirements

• QGAN: Training is resource inefficient and 

unstable

• QCBM: Do not scale well in qubits and 

gates
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QAG Model
Model Schema

• The generation of 𝑁 

pixels requires 𝑁 qubits

Quantum state preparation

• Implement superposition 

(Hadamard Gate H)

• Implement random noise 

(RY Gate)

Parametrized unitary U
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QAG Model
Downsampling

• “Quantum Advantage” not yet reached 

• Only initial investigations with simplified models

• Understand advantages and challenges

Energy
(GeV)

Particle

Particle

Downsampling

(25 x 25 x 25) (1 x 1 x 8)
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QAG Model
Generation process

Once the optimal parameters Ԧ𝜃∗ are found through the 

training process

1. Generate a random vector Ԧ𝑥 for the 𝑅𝑌 gates 

2. Repeat 𝑛𝑏𝑠ℎ𝑜𝑡𝑠 times:

1. Measure the qubits ({0,1})

𝜎𝑍 = 2 ∗
#|0⟩

𝑛𝑏𝑠ℎ𝑜𝑡𝑠
− 1
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=  −0.976

=  −0.904

=  −0.841

QAG Model

Once the optimal parameters Ԧ𝜃∗ are found through the 

training process

1. Generate a random vector Ԧ𝑥 for the 𝑅𝑌 gates 

2. Repeat 𝑛𝑏𝑠ℎ𝑜𝑡𝑠 times:

1. Measure the qubits ({0,1})

𝜎𝑍 = 2 ∗
#|0⟩

𝑛𝑏𝑠ℎ𝑜𝑡𝑠
− 1

Generation process
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QAG Model
Training process

Choose a random initial set of parameters 
Ԧ𝜃0:

For each epoch 𝑖:
1. Generate 𝑀 images

2. Evaluate the loss

3. Update the parameters 𝜃𝑖 → 𝜃𝑖+1

(Gradient descent, SPSA)

𝑀 images
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Training

Model Evaluation: Example Run

• Stable, smooth and fast 

convergence

• MMD loss is sufficient 

to learn the correlation 

between the features 

(pixels in the detector) 
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Training

Model Evaluation: Example Run

• Stable, smooth and fast 

convergence

• MMD loss is sufficient 

to learn the correlation 

between the features 

(pixels in the detector) 
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Events generated

Average measured energy for 

each pixel

Total energy distributions of true 

(Geant4) and generated events

Model Evaluation: Example Run

Good accuracy in both total energies and average pixel-wise energies
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Model Evaluation: Example Run
Correlations

Model is able to reproduce correlations and anti-correlations in the shower
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Models trained without noise

• Models trained without noise

• Inference made with noise,    

20 images generated

• Less accuracy in Hardware 

due to the presence of swap 

gates in the transpiled circuit

Model Evaluation: Noise Study

Present usual noise level ≲ 2%
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Models trained in noisy instances

Model Evaluation: Noise Study

• Models trained with noise

• Inference made with noise,    

20 images generated

• Improved accuracy: the QAG 

model is able to adapt its 

parameters to the noisy 

hardware to improve its 

precision

To be noted:

Different scale in 𝑥 and 𝑦
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Models trained in 

noisy instances

Model Evaluation: Noise Study

• When trained directly 

on the noisy instance 

the QAG model is able 

to adapt its parameters 

to the noisy hardware 

to improve its precision

Models trained in 

noiseless simulators
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Conclusions
Summary

QAG: a quantum generative model

• Good scaling of gates and qubits

• Stable, smooth and fast training convergence

• Good inference accuracy

• Can easily adapt to current NISQ Devices

Future developments

• More in-depth hyperparameter study

• Overcome limit 1 qubit 1 pixel



References

Main Paper:

1. Rehm, F., Vallecorsa, S., Borras, K., Krücker, D., Grossi, M., & Varo, V. (2023). Precise 

image generation on current noisy quantum computing devices. Quantum Science and 

Technology, 9(1), 015009.

PhD Thesis:

2. Rehm, F. (2023). Deep learning and quantum generative models for high energy 

physics calorimeter simulations. (Doctoral dissertation, RWTH Aachen University, RWTH 

Aachen U.).



Thank You!

ENGAGE has received funding from the European Union’s Horizon 2020 Research and Innovation 

Programme under the Marie Skłodowska-Curie Grant Agreement No. 101034267.

Contact:

  Saverio Monaco

       saverio.monaco@desy.de

       github.com/SaverioMonaco/QAG   (Private)



Backup 

slides



DESY. Page 26

Discrete

• Source of entropy given by the 

measurement process

• More qubits needed

• Single measurement

Continuous

• Source of entropy given by 𝒙

• Fewer qubits needed

• Multiple measurement needed 

Backup: QAG Model
Types of generative models QAG         QCBM
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Backup: Encoding / Decoding

Angle – Expectation value - Energy

⟩|0

⟩|1

⟨𝜎𝑍⟩

| ⟩Ψ
z

𝛼

𝜎𝑍 = 2 ∗
#|0⟩

𝑛𝑏𝑠ℎ𝑜𝑡𝑠
− 1

𝛼 = sin−1 𝜎𝑍  

𝐸 =
𝐸𝑚𝑎𝑥

2⋅𝜃𝑚𝑎𝑥
⋅ 𝜃 + 𝜃𝑚𝑎𝑥  
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Backup: Example Run

Hyperparameters • circuit block 

• depth           

• lr                   

• n_images    

• sigmas        

: mera_up

: 2
: 0.03 
: 100
: [0.1, 1, 10]
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Backup: Loss Functions

Loss terms

Losses

•  

•  

where



DESY. Page 30

Backup: Loss Functions

Loss : MMD + Corr

Loss : MMD

Simple setup
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Backup: Loss Functions

Loss : MMD + Corr

Loss : MMD

Complex setup
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