Precise Quantum Angle Generator Designed for Noisy Quantum Devices

FH SciComp 2024

S. Monaco^{1,2}, F. Rehm³, S. Vallecorsa³, M. Grossi³, K. Borras^{1,2}, D. Kruecker¹, S. Schnake^{1,2}

¹ DESY, Hamburg, Germany
 ² RWTH Aachen University, Aachen, Germany
 ³ CERN, Geneva, Switzerland

Roadmap

QAG Model

Conclusions Future developments

Quantum Computing

Quantum Computing

Introduction

- Use case: Particle Physics Calorimeter Simulations
 - Calorimeter detectors responsible for measuring particle energies in physics
 - Current Geant4 Monte Carlo simulations are computationally demanding
 - \rightarrow Searching for alternatives
- Previously: Geant4 Monte Carlo Simulations
- Now: Deep Learning
 - → Developed a Deep Learning model for calorimeter simulations which requires fewer computing resources (DLGAN)
- Next: Try Quantum Computing

Quantum Computing

What is Quantum Computing

Quantum Computing allows for the accurate evolution of a quantum state $|0\rangle^{\otimes N}$ into another $|\psi\rangle$

High-dimensional search space

- Fewer parameters needed
- Faster learning

Quantum Computing

QAG Model

Model Evaluation

Conclusions Future developments

Introduction

- In this study: A new quantum generative model:
 Quantum Angle Generator (QAG)
- Why a new model?
 - Current quantum models do not satisfy our requirements
 - QGAN: Training is resource inefficient and unstable
 - QCBM: Do not scale well in qubits and gates

Downsampling

X "Quantum Advantage" not yet reached

- Only initial investigations with simplified models
- Understand advantages and challenges

Generation process

Once the optimal parameters $\vec{\theta}^*$ are found through the training process

- 1. Generate a random vector \vec{x} for the *RY* gates
- 2. Repeat nb_{shots} times:
 - 1. Measure the qubits ({0,1})

Generation process

Once the optimal parameters $\vec{\theta}^*$ are found through the training process

- 1. Generate a random vector \vec{x} for the *RY* gates
- 2. Repeat nb_{shots} times:
 - 1. Measure the qubits ({0,1})

$$\langle \sigma_Z \rangle = 2 * \frac{\#|0\rangle}{nb_{shots}} - 1$$

Training process

Choose a random initial set of parameters $\vec{\theta}_0$:

For each epoch *i*:

- 1. Generate *M* images
- 2. Evaluate the loss
- 3. Update the parameters $\theta_i \rightarrow \theta_{i+1}$ (Gradient descent, SPSA)

 $\mathcal{L}(ec{ heta}_i) = \mathrm{MMD}^2(X \sim \mathrm{QAG}(ec{ heta}_i),Y)$

Model Evaluation

Model Evaluation: Example Run Training

 $\mathcal{L}(artheta,Y,t) = lpha(t)\cdot \mathrm{MMD}^2(artheta,Y) + eta(t)\cdot \mathrm{Corr}(artheta,Y)$

MMD loss is sufficient to learn the correlation between the features (pixels in the detector)

Model Evaluation: Example Run

Training

$$\mathcal{L}(artheta,Y,t) = \mathrm{MMD}^2(artheta,Y)$$

Stable, smooth and fast convergence

MMD loss is sufficient to learn the correlation between the features (pixels in the detector)

Model Evaluation: Example Run

Events generated

Total energy distributions of true (Geant4) and generated events

Average measured energy for

each pixel

Good accuracy in both total energies and average pixel-wise energies

Model Evaluation: Example Run

Correlations

Model is able to reproduce correlations and anti-correlations in the shower

Model Evaluation: Noise Study

Models trained without noise

- Models trained without noise
- Inference made with noise, 20 images generated
- Less accuracy in Hardware due to the presence of swap gates in the transpiled circuit

Present usual noise level $\lesssim 2\%$

Model Evaluation: Noise Study

Models trained in noisy instances

To be noted: Different scale in x and y

- Inference made with noise, 20 images generated
- Improved accuracy: the QAG model is able to adapt its parameters to the noisy hardware to improve its precision

Model Evaluation: Noise Study

When trained directly on the noisy instance the QAG model is able to adapt its parameters to the noisy hardware to improve its precision

Models trained in noisy instances

Models trained in **noiseless simulators**

Conclusions

Quantum Computing

QAG Mode

Model Evaluation

Conclusions Future developments

Conclusions

Summary

QAG: a quantum generative model

Good scaling of gates and qubits
 Stable, smooth and fast training convergence
 Good inference accuracy
 Can easily adapt to current NISQ Devices

Future developments

Solution More in-depth hyperparameter study Overcome limit 1 qubit \leftrightarrow 1 pixel

References

Main Paper:

1. Rehm, F., Vallecorsa, S., Borras, K., Krücker, D., Grossi, M., & Varo, V. (2023). Precise image generation on current noisy quantum computing devices. *Quantum Science and Technology*, 9(1), 015009.

PhD Thesis:

 Rehm, F. (2023). Deep learning and quantum generative models for high energy physics calorimeter simulations. (Doctoral dissertation, RWTH Aachen University, RWTH Aachen U.).

Thank You!

Contact: Saverio Monaco Saverio.monaco@desy.de Compositionaco/QAG (Private)

ENGAGE has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No. 101034267.

Backup slides

Backup: QAG Model

Types of generative models

Continuous

• Source of entropy given by \vec{x}

Fewer qubits neededMultiple measurement needed

Source of entropy given by the measurement process
 More qubits needed
 Single measurement

DESY.

Backup: Encoding / Decoding

Angle – Expectation value - Energy

$$\langle \sigma_Z \rangle = 2 * \frac{\#|0\rangle}{nb_{shots}} - 1$$

$$\alpha = \sin^{-1}(\langle \sigma_Z \rangle)$$

$$E = \left(\frac{E_{max}}{2 \cdot \theta_{max}}\right) \cdot \left(\theta + \theta_{max}\right)$$

Backup: Example Run

Hyperparameters

- circuit block : mera_up
- depth
- Ir
- n_images
- sigmas

: 2

: 0.03

0 +

0.0

0.1

0.2

0.3

energy in MeV

0.4

0.5

0.6

Backup: Loss Functions

Loss terms

$$\mathrm{MMD}^2 = E_{X \sim P}ig[k(X,X)ig] + E_{Y \sim Q}ig[k(Y,Y)ig] - 2E_{X \sim P,Y \sim Q}ig[k(X,Y)ig]$$

$$ext{Corr} = rac{1}{N^2} \sum_{i=1}^N \sum_{j=1}^N \left(R_{ij}^{X \sim ext{QAG}(ec{ heta})} - R_{ij}^Y
ight)^2 \qquad ext{ where } \quad R_{ij} = rac{C_{ij}}{\sqrt{C_{ii}C_{jj}}}$$

Losses

• $L(\vartheta, Y, t) = MMD^2(\theta, Y) + Corr(\theta, Y)$

•
$$L(\vartheta,Y,t) = lpha(t) \cdot \mathrm{MMD}^2(heta,Y) + eta(t) \cdot \mathrm{Corr}(heta,Y)$$

Simple setup

depth =1

 $n_{images} = 30$

Backup: Loss Functions

1.0 0.8 1.0 0.8 0.4 0.2 0.0 0.100 200 300 400 500 600 Epoch

Geant4 QAG -1.000 0 - 0.75 1 1 0.50 2 2 - 0.25 bixel 4 pixel 4 - 0.00 -0.25 5 -5 -0.50 6 6 -0.75 7 -1.00 5 6 7 0 1 2 3 4 5 6 7 Ó 1 2 3 4 pixel pixel

Loss : MMD

Loss : MMD + Corr

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

coefficient

relati

õ

Complex setup

$egin{array}{cc} { m depth} &=2 \ { m n_images} &=200 \end{array}$

Backup: Loss Functions

Loss: MMD + Corr

Loss : MMD

coefficient

relatio

õ