CNNs and GNNs for Tagging Anomalous Showers with ATLAS DESY FH-SciComp Workshop 2024

Lukas Bauckhage, Federico Meloni

Physikalisches Institut Universität Bonn, Deutsches Elektronen-Synchrotron (DESY) Hamburg

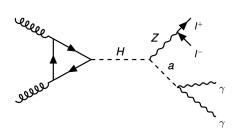
02.07.2024

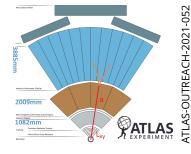
990

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Physics Context: Long-lived ALPs

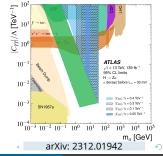
Reconstructing long-lived ALP decay photons





What if the ALP is long-lived?

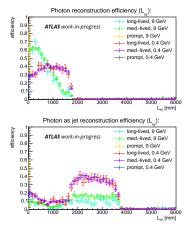
- Important difference: Due to long ALP lifetime ⇒ large displacement of ALP decay vertex decreases reconstruction efficiency of photons
- New challenge: optimize reconstruction of displaced photons



Physics Context: Long-lived ALPs

Reconstruction efficiency of displaced photons

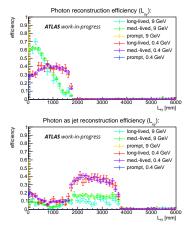
- L_{xy}: transverse distance between IP and ALP decay vertex
- When reaching HCAL, jets supersede photons
- photons/jets are matched to truth ALP decay photons (minimal ΔR)
- One approach: jet objects instead of photons?
- 2 main questions:
 - How to optimize selection/cutflow?
 - How to identify displaced photon candidates?



Physics Context: Long-lived ALPs

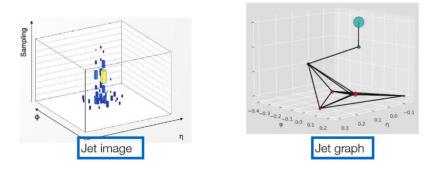
Reconstruction efficiency of displaced photons

- L_{xy}: transverse distance between IP and ALP decay vertex
- When reaching HCAL, jets supersede photons
- photons/jets are matched to truth ALP decay photons (minimal ΔR)
- One approach: jet objects instead of photons?
- 2 main questions:
 - How to optimize selection/cutflow?
 - How to identify displaced photon candidates?



Images vs. Graphs

How to identify displaced photon candidates?



- CNN jet tagger already used in a dark photon analysis (arXiv: 2206.12181)
- New: Transform clusters of calo cells into graphs and use GNN to tag jets
- Jet Images mostly empty \Rightarrow conversion to graphs very convenient (less storage/memory, faster I/O, faster training, ...)
- CNN vs. GNN comparison (as fair as possible)

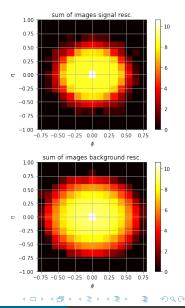
CNN framework

L. Bauckhage (Uni Bonn, DESY) DESY FH-SciComp 2024 - CNNs & GNNs for tagging anom. showers ATLAS

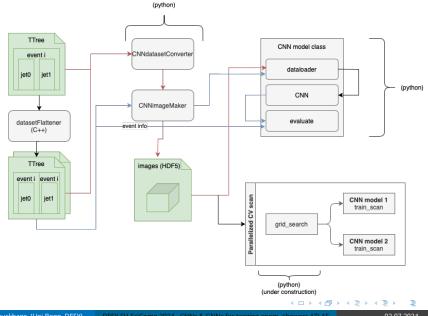
02.07.2024 4/16

Image Processing

- Find highest energy cluster of jet
- Convert positions of all other clusters to relative coordinates w.r.t. highest energy cluster
- Each cluster energy filled in $\eta \times \phi \times layer = 15 \times 15 \times (4/5/3)$ histograms
- 3 different histograms for barrel, endcap and barrel extension (different # of layers)
- Clusters below threshold $E_{min} = 400 \,\mathrm{MeV}$ are not used
- Histograms are rescaled by total energy of all clusters (i.e. normalized to 1)



CNN framework



GNN framework

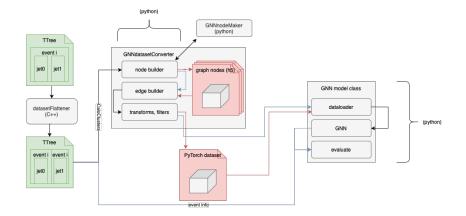
L. Bauckhage (Uni Bonn, DESY) DESY FH-SciComp 2024 - CNNs & GNNs for tagging anom. showers ATLAS

02.07.2024 7/16

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

GNN framework

GNN framework



≣। ≣ •ी.२.० 02.07.2024 8/16

< □ > < □ > < □ > < □ > < □ > < □ >

Comparison

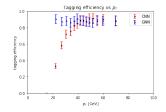
L. Bauckhage (Uni Bonn, DESY) DESY FH-SciComp 2024 - CNNs & GNNs for tagging anom. showers ATLAS

E ► E ∽ ९ ୯ 02.07.2024 9/16

イロト イ団ト イヨト イヨト

Comparisor

Comparison of Performance



Layer (type)	Output Shape	Paran #		I	Name	T	Туре	I	Params		
input_layer (InputLayer)	[Okene, 15, 15, 12, 1)]	•									
conv3d_0 (Conv3D)		1609	0		loss		BCEWithLogitsLoss				
canv3d_1 (Canv30)	(None, 15, 15, 12, 68)	97268	1		norm		BatchNorm				
max pool 0 (MaxPooline3D)	(Norm. 7, 7, 12, 60)		2		conv1		ARMAConv		203 K		
cany3d 2 (Cany30)	(Norm. 7, 7, 12, 50)	97258	3		conv2		ARMAConv		590 K		
			4		conv3		ARMAConv		590 K		
max_pool_1 (MaxPeoling3D)	(Norm, 2, 2, 12, 68)	۰	5		lin0		Linear		65.8 K		
flatten (Flatten)	(Norm, 2880)	۰	6		lin		Linear		257		
dense_@ (Dense)		288100									
dense_1 (Dense)		181	1.				rainable params				
				0		Non-trainable params					
Total params: 484481 (1.85 M Trainable params: 484481 (1.	Total params: 484481 (1.85 MB) Trainable params: 484481 (1.85 MB)			1.5 M		Total params					
Non-trainable paransı 0 10.0	Non-trainable parans: 0 (0.00 Byte)				5.803		otal estimated mode	ı١	params	size	(MB)

L. Bauckhage (Uni Bonn, DESY) DESY FH-SciComp 2024 - CNNs & GNNs for tagging anom. showers ATLAS

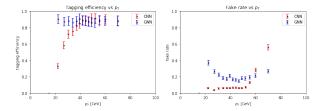
02.07.2024 10 / 16

< A

• • = • • =

Comparisor

Comparison of Performance



Layer (type)	Output Shape	Paran #	1	Name	I	Туре	I	Params		
input_layer (InputLayer)	[Okone, 15, 15, 12, 1)]	•								
canv3d_0 (Canv3D)		1609	0	loss		BCEWithLogitsLoss				
canv3d_1 (Canv3D)		97208	1	norm		BatchNorm				
max_pool_0 (MaxPooling3D)	(Norm, 7, 7, 12, 60)	•	2	conv1		ARMAConv		203 K		
cany3d 2 (Cany30)	(Norm. 7, 7, 12, 50)	97298	3	conv2		ARMAConv		590 K		
max pool 1 (MaxPeoline3D)	(None, 2, 2, 12, 68)		4	conv3		ARMAConv		590 K		
		-	5	lin0		Linear		65.8 K		
flatten (Flatten)	(None, 2880)	۰	6	lin		Linear		257		
dense_@ (Dense)		288100								
dense_1 (Dense)		181	1.5			rainable params				
			0		N	on-trainable params				
	Total params: 484401 (1.85 MB) Trainoble params: 484401 (1.85 MB)			м	т	otal params				
Hainoule paramsi kommel Liko mbi Non-trainable paramsi 0 (0.00 Byte)			5.803		Total estimated model params size ((MB)

L. Bauckhage (Uni Bonn, DESY) DESY FH-SciComp 2024 - CNNs & GNNs for tagging anom. showers ATLAS

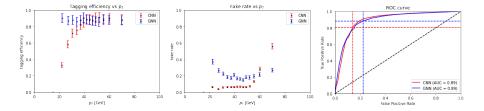
02.07.2024 10 / 16

< A

3 1 4 3

Comparisor

Comparison of Performance



Layer (type)	Output Shape	Paran #	1	Name		Туре		Params		
input_layer (InputLayer)	[Okene, 15, 15, 12, 1)]	•								
canv3d_0 (Canv30)		1609	0	loss		BCEWithLogitsLoss				
canv3d_1 (Canv3D)	(None, 15, 15, 12, 60)	97208	1	norm		BatchNorm				
max pool 0 (MaxPooline3D)	(Note, 7, 7, 12, 60)		2	conv1		ARMAConv		203 K		
cany3d 2 (Cany30)	(Nore, 7, 7, 12, 50)	97258	3	conv2		ARMAConv		590 K		
max pool 1 (MaxPooline3D)	(Nore, 2, 2, 12, 50)		4	conv3		ARMAConv		590 K		
		-	5	lin0		Linear		65.8 K		
flatten (flatten)	(None, 2580)	۰	6	lin		Linear		257		
dense_@ (Dense)		288100								
dense_1 (Dense)		181	1.5			rainable params				
			0		N	on-trainable params				
Total params: 484481 (1.85) Trainable params: 484481 (1	Total params: 484401 (1.85 MB) Trainable params: 484401 (1.85 MB)				Total params					
	Non-trainable parans: # (0.00 Byte)			5.803		Total estimated model params size ((MB)

L. Bauckhage (Uni Bonn, DESY) DESY FH-SciComp 2024 - CNNs & GNNs for tagging anom. showers ATLAS

02.07.2024 10 / 16

Conclusion

- Some (computational) challenges to overcome
- CNN and GNN frameworks set up and ready for optimizing and comparing models

Conclusion

- Some (computational) challenges to overcome
- CNN and GNN frameworks set up and ready for optimizing and comparing models

"Feature Request":

Run LCG Jupyter/IPython kernels on NAF JupyterHub Server

- It should be possible by specifying the correct kernel in the <code>Jupyter</code> configuration file
- Need to set all necessary environment variables to CVMFS paths
- If someone has done this ⇒ please let me know

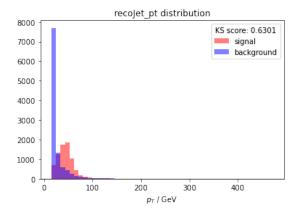
L. Bauckhage (Uni Bonn, DESY)

æ 02.07.2024

990

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

p_T distribution



イロト イヨト イヨト イヨト

э

Training Procedure

- datasets of $\mathcal{O}(10^5) \mathcal{O}(10^6)$ **3D** images won't fit into memory (15 × 15 × (4 + 5 + 3) pixel images \approx 173 kB \Rightarrow batch of 5000 images \approx 864 MB
 - \Rightarrow whole dataset $\approx O(100 \text{ GB}))$
- recreate images on-the-fly at every epoch not the best solution either

∃ ▶ ∢

Training Procedure

- datasets of $\mathcal{O}(10^5) \mathcal{O}(10^6)$ **3D** images won't fit into memory
 - $(15 \times 15 \times (4 + 5 + 3) \text{ pixel images} \approx 173 \text{ kB}$
 - \Rightarrow batch of 5000 images pprox 864 MB
 - \Rightarrow whole dataset $\approx O(100 \text{ GB}))$
- recreate images on-the-fly at every epoch not the best solution either
- \Rightarrow preproduce images and store to disk

∃ ▶ ∢

Training Procedure

- datasets of $\mathcal{O}(10^5) \mathcal{O}(10^6)$ **3D** images won't fit into memory (15 × 15 × (4 + 5 + 3) pixel images \approx 173 kB
 - \Rightarrow batch of 5000 images \approx 864 MB
 - \Rightarrow whole dataset $\approx \mathcal{O}(100 \, \text{GB}))$
- recreate images on-the-fly at every epoch not the best solution either
- \Rightarrow preproduce images and store to disk
 - A complete dataset still too large to load into memory at once

Training Procedure

- datasets of $\mathcal{O}(10^5) \mathcal{O}(10^6)$ **3D** images won't fit into memory $(15 \times 15 \times (4 + 5 + 3) \text{ pixel images} \approx 173 \text{ kB}$
 - \Rightarrow batch of 5000 images \approx 864 MB
 - \Rightarrow whole dataset $\approx \tilde{\mathcal{O}}(100 \,\text{GB}))$
- recreate images on-the-fly at every epoch not the best solution either
- \Rightarrow preproduce images and store to disk
 - A complete dataset still too large to load into memory at once
- ⇒ load images in (variable-size) batches (tf.data.Dataset and tf.data.Dataset.from_generator)

Training Procedure

- datasets of $\mathcal{O}(10^5) \mathcal{O}(10^6)$ **3D** images won't fit into memory
 - $(15\times15\times(4+5+3)\ \text{pixel images}\approx173\,\text{kB}$
 - \Rightarrow batch of 5000 images pprox 864 MB
 - \Rightarrow whole dataset $\approx \mathcal{O}(100 \, \text{GB}))$
- recreate images on-the-fly at every epoch not the best solution either
- \Rightarrow preproduce images and store to disk
 - A complete dataset still too large to load into memory at once

```
⇒ load images in (variable-size) batches (tf.data.Dataset and
```

```
tf.data.Dataset.from_generator)
```

• How to maintain the linking between images and the original ROOT event data? (e.g. to investigate performance, efficiencies, etc. in dep. of kinematic variables)

< ロ > < 同 > < 回 > < 回 >

- Each event can have multiple jets
- Some events/jets filtered out in pre-selection
- Definition of Signal/Background might depend on complicated criteria (e.g. truthmatching)

Training Procedure

- datasets of $\mathcal{O}(10^5) \mathcal{O}(10^6)$ **3D** images won't fit into memory
 - $(15 \times 15 \times (4 + 5 + 3) \text{ pixel images} \approx 173 \text{ kB}$
 - \Rightarrow batch of 5000 images pprox 864 MB
 - \Rightarrow whole dataset $\approx \mathcal{O}(100 \, \text{GB}))$
- recreate images on-the-fly at every epoch not the best solution either
- \Rightarrow preproduce images and store to disk
 - A complete dataset still too large to load into memory at once

```
⇒ load images in (variable-size) batches (tf.data.Dataset and
```

```
tf.data.Dataset.from_generator)
```

- How to maintain the linking between images and the original ROOT event data? (e.g. to investigate performance, efficiencies, etc. in dep. of kinematic variables)
- Each event can have multiple jets
- Some events/jets filtered out in pre-selection
- Definition of Signal/Background might depend on complicated criteria (e.g. truthmatching)

 \Rightarrow For performance tests create images on-the-fly from ROOT data and read event data along with CaloCluster data

"flatten" ROOT tree (i.e. 1 *n*-jet-event \rightarrow *n* 1-jet-events)

02.07.2024 14/1

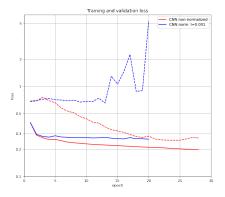
Sac

A D > A B > A B > A B >

Graph Processing

- Create nodes from CaloClusters with features η, φ, E_{abs}, E_{norm} (for each layer) η, φ relative to highest energy cluster store to disk (.h5)
- Create PyTorch dataset (GNNdataset class inherits from torch_geometric.data.InMemoryDataset):
 - Load nodes from .h5 files and combine them
 - Build graphs from list of nodes, filter out nodes below threshold $E_{min} = 400 \text{ MeV}$ and remove E_{abs} as a feature
- Apply filters (→ jetgraphs library)
 - pre-filters (e.g. $n_{\text{nodes}} \ge 2$)
 - pre-transform: build edges according with tunable thresholds (threshold for distance between nodes in same layer, consecutive layer, self-loop weights, ...)
 - transform: add layer information
 - post-filters
- Store dataset to disk (.pt)
- No manual batch-wise training routine necessary
- (Possibility to create graphs on-the-fly from ROOT data for tests of dependence of performance, efficiencies, etc. on kinematics)

CNN normalization

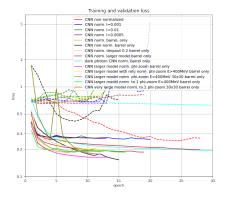


• After normalization of images was introduced, CNN was not able to improve on the validation or test set

Image: Image:

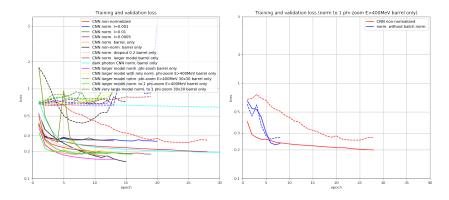
3 1 4 3

CNN normalization



- After normalization of images was introduced, CNN was not able to improve on the validation or test set
- After many tests, it was found that batch normalization layers were the cause of the problem:

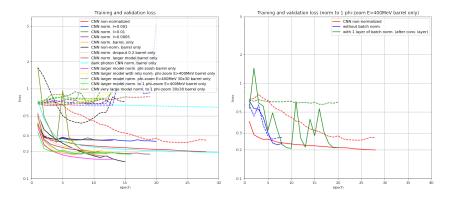
CNN normalization



- After normalization of images was introduced, CNN was not able to improve on the validation or test set
- After many tests, it was found that batch normalization layers were the cause of the problem:

< □ > < 同 > < 回 > < 回 > < 回 >

CNN normalization



- After normalization of images was introduced, CNN was not able to improve on the validation or test set
- After many tests, it was found that batch normalization layers were the cause of the problem:
- As soon as a single batch norm. layer is introduced in model ⇒ CNN does not improve on validation set anymore
- We were puzzled by this behavior, batch normalization should do the opposite